swirl stabilized combustion
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Roberto Meloni ◽  
Antonio Andreini ◽  
Pier Carlo Nassini

Abstract This paper presents a new CFD approach for the assessment of the NOx emission. The methodology is validated against the experimental data of a heavy-duty gas turbine annular combustor. Since the NOx formation involves time scales that are different from the fuel oxidation time, the present work defines the transport equation source terms for NOx on the basis of a dedicate NOx-Damköhler number. The latter parameter allows to properly distinguish the "in-flame" contribution from the "post-flame" one. While the former is a mix of several mechanisms (prompt, N2O-pathway, thermal), the latter is dominated by the thermal contribution. The validation phase is developed in a Large-Eddy Simulation (LES) framework where the Extended Turbulent Flame Speed model is implemented to consider the influence of both heat loss and strain rate on the progress variable source term. The accuracy of the model against the most important operability parameters of the combustor is verified. A strong focus on the fuel composition effect onto NOx is presented as well. For any simulated operating condition, the present methodology is able to provide a limited percentage error if compared with the data, considering also different combustion regimes. Leveraging this alignment, the last portion of the paper is dedicated to a detailed post processing highlighting the role of some key factors on to NOx formation. In particular, the focus will be dedicated to the impact of the fuel gas composition and the pilot split.


2021 ◽  
Vol 62 (8) ◽  
Author(s):  
Lionel Hirschberg ◽  
Friedrich Bake ◽  
Karsten Knobloch ◽  
Angelo Rudolphi ◽  
Sebastian Kruck ◽  
...  

AbstractMeasurements of sound due to swirl–nozzle interaction are presented. In the experiment a swirl structure was generated by means of unsteady tangential injection into a steady swirl-free flow upstream from a choked convergent–divergent nozzle. Ingestion of swirl by the choked nozzle caused a mass-flow rate change, which resulted in a downstream-measured acoustic response. The downstream acoustic pressure was found to remain negative as long as the swirl is maintained and reflections from the open downstream pipe termination do not interfere. The amplitude of this initial acoustic response was found to be proportional to the square of the tangential mass-flow rate used to generate swirl. When the tangential injection valve was closed, the mass-flow rate through the nozzle increased, resulting in an increase of the downstream acoustic pressure. This increase in signal was compared to the prediction of an empirical quasi-steady model, constructed from steady-state flow measurements. As the opening time of the valve was varied, the signal due to swirl evacuation showed an initial overshoot with respect to quasi-steady behavior, after which it gradually decayed to quasi-steady behavior for tangential injection times long compared to the convection time in the pipe upstream of the nozzle. This demonstrates that the acoustic signal can be used to obtain quantitative information concerning the time dependence of the swirl in the system. This could be useful for understanding the dynamics of flow in engines with swirl-stabilized combustion. Graphic abstract


2021 ◽  
Author(s):  
R. Meloni ◽  
A. Andreini ◽  
P. C. Nassini

Abstract This paper presents a new CFD approach for the assessment of the NOx emission. The methodology is validated against the experimental data of a heavy-duty gas turbine annular combustor. Since the NOx formation involves time scales that are different from the fuel oxidation time, the present work defines the transport equation source terms for NOx on the basis of a dedicate NOx-Damköhler number. The latter parameter allows to properly distinguish the “in-flame” contribution from the “post-flame” one. While the former is a mix of several mechanisms (prompt, N2O-pathway thermal), the latter is dominated by the thermal contribution. The validation phase is developed in a Large-Eddy Simulation (LES) framework where the Extended Turbulent Flame Speed model is implemented to consider the influence of both heat loss and strain rate on the progress variable source term. The accuracy of the model against the most important operability parameters of the combustor is verified. A strong focus on the fuel composition effect onto NOx is presented as well. For any simulated operating condition, the present methodology is able to provide a limited percentage error if compared with the data, considering also different combustion regimes. Leveraging this alignment, the last portion of the paper is dedicated to a detailed post processing highlighting the role of some key factors on to NOx formation. In particular, the focus will be dedicated to the impact of the fuel gas composition and the pilot split.


Fuel ◽  
2021 ◽  
Vol 289 ◽  
pp. 119922
Author(s):  
Kai Zhang ◽  
Yazhou Shen ◽  
Christophe Duwig

Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119559
Author(s):  
Yunpeng Liu ◽  
Jinghua Li ◽  
Tianhong Zhang ◽  
Yingwen Yan

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Thomas Hofmeister ◽  
Tobias Hummel ◽  
Bruno Schuermans ◽  
Thomas Sattelmayer

Abstract This paper presents a methodology to compute acoustic damping rates of transversal, high-frequency modes induced by vortex-shedding. The acoustic damping rate presents one key quantity for the assessment of the linear thermoacoustic stability of gas turbine combustors. State-of-the-art network models—as employed to calculate damping rates in low-frequency, longitudinal systems—cannot fulfill this task due to the acoustic noncompactness encountered in the high-frequency regime. Furthermore, it is yet unclear, whether direct eigensolutions of the linearized Euler equations (LEE), which capture the mechanism of vortex shedding, yield correct damping rate results constituted by the implicit presence of acoustic as well as hydrodynamic contributions in these solutions. The methodology's applicability to technically relevant systems is demonstrated by a validation test case using a lab-scale, swirl-stabilized combustion system.


Author(s):  
Thomas Hofmeister ◽  
Tobias Hummel ◽  
Bruno Schuermans ◽  
Thomas Sattelmayer

Abstract This paper presents a methodology to compute acoustic damping rates of transversal, high-frequency modes induced by vortex-shedding. The acoustic damping rate presents one key quantity for the assessment of the linear thermoacoustic stability of gas turbine combustors. State of the art network models — as employed to calculate damping rates in low-frequency, longitudinal systems — cannot fulfill this task due to the acoustic non-compactness encountered in the high-frequency regime. Furthermore, it is yet unclear, whether direct eigensolutions of the Linearized Euler Equations (LEE), which capture the mechanism of vortex shedding, yield correct damping rate results constituted by the implicit presence of acoustic as well as hydrodynamic contributions in these solutions. The methodology’s applicability to technically relevant systems is demonstrated by a validation test case using a lab-scale, swirl-stabilized combustion system.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Yonas Niguse ◽  
Ajay K. Agrawal

The effect of the chamber pressure on combustion of a twin-fluid-atomized spray of straight vegetable oil (VO) in a swirl stabilized combustion system is experimentally studied. A system with high pressure capabilities was developed, and flame and emissions characteristics of VO are investigated at elevated pressures up to about 5 bars, different heat release rates (HRRs), and atomizing air to liquid ratios (ALR) by mass. An image analysis technique was developed to infer flame and soot characteristics from visual images acquired by a digital camera. An increase in the ALR resulted in improved combustion of VO, characterized by blue flames, lower CO and NOx emissions, and minimal soot formation. For a given fuel flow rate, an increase in the chamber pressure resulted in smaller volume flames with lower CO levels but higher NOx emissions. Compared to diesel, as pressure increased, straight VO flames produced lower NOx and more voluminous flames characterized by distributed combustion with less soot formation. Overall, straight VO could be atomized and combusted at elevated pressures using the twin-fluid atomizer of the present study, and the resulting VO flames exhibited less sensitivity to chamber pressure variations.


Author(s):  
Alp Albayrak ◽  
Thomas Steinbacher ◽  
Thomas Komarek ◽  
Wolfgang Polifke

Spectral distributions of the sound pressure level (SPL) observed in a premixed, swirl stabilized combustion test rig are scrutinized. Spectral peaks in the SPL for stable as well as unstable cases are interpreted with the help of a novel criterion for the resonance frequencies of the intrinsic thermo-acoustic (ITA) feedback loop. This criterion takes into the account the flow inertia of the burner and indicates that in the limit of very large flow inertia, ITA resonance should appear at frequencies where the phase of the flame transfer function (FTF) approaches −π/2. Conversely, in the limiting case of vanishing flow inertia, the new criterion agrees with previous results, which state that ITA modes may arise when the phase of the FTF is close to −π. Relying on the novel criterion, peaks in the SPL spectra are identified to correspond to either ITA or acoustic modes. Various combustor configurations are investigated over a range of operating conditions. It is found that in this particular combustor, ITA modes are prevalent and dominate the unstable cases. Remarkably, the ITA frequencies change significantly with the bulk flow velocity and the position of the swirler but are almost insensitive to changes in the length of the combustion chamber (CC). These observations imply that the resonance frequencies of the ITA feedback loop are governed by convective time scales. A scaling rule for ITA frequencies that relies on a model for the overall convective flame time lag shows good consistency for all operating conditions considered in this study.


Author(s):  
Yonas G. Niguse ◽  
Ajay K. Agrawal

The effect of the chamber pressure on combustion of a twin-fluid-atomized spray of straight vegetable oil (VO) in a swirl stabilized combustion system is experimentally studied. A system with high pressure capabilities was developed, and flame and emissions characteristics of VO are investigated at elevated pressures, up to about 5 bars, different heat release rates and atomizing air to liquid ratios (ALR) by mass. An image analysis technique was developed to infer flame and soot characteristics from visual images acquired by a digital camera. An increase in the ALR improved combustion characterized by blue flames, lower CO and NOx emissions, and minimal soot formation. For a given fuel flow rate, an increase in the chamber pressure resulted in smaller volume flames with lower CO levels but higher NOx emissions. Compared to diesel, as pressure increased, straight VO flames produced lower NOx and more voluminous flames characterized by distributed combustion with less soot formation. Overall, straight VO could be atomized and combusted at elevated pressures using the twin-fluid atomizer of the present study, and the resulting VO flames exhibited less sensitivity to chamber pressure variations.


Sign in / Sign up

Export Citation Format

Share Document