Heat Transfer in Rotating, Trailing Edge, Converging Channels With Full and Partial Height Strip-Fins

2021 ◽  
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract A wide variety of pin-fins have been used to enhance heat transfer in internal cooling channels. However, due to their large blockage in the flow direction, they result in an undesirable high pressure drop. This experimental study aims to reduce pressure drop while increasing the heat transfer surface area by utilizing strip-fins in converging internal cooling channels. The channel is designed with a trapezoidal cross-section, converges in both transverse and longitudinal directions, and is also skewed β = 120° with respect to the direction of rotation in order to model a trailing edge cooling channel. Only the leading and trailing surfaces of the channel are instrumented, and each surface is divided into eighteen isolated copper plates to measure the regionally averaged heat transfer coefficient. Utilizing pressure taps at the inlet and outlet of the channel, the pressure drop is obtained. Three staggered arrays of strip-fins are investigated: one full height configuration and two partial fin height arrangements (Sz = 2mm and 1mm). In all cases, the strip fins are 2mm wide (W) and 10mm long (Lf) in the flow direction. The fins are spaced such that Sy/Lf = 1 in the streamwise direction. However, due to the convergence the spanwise spacing Sx/W, was varied from 8 to 6.2 along the channel. The rotation number of the channel varied up to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300rpm. It is found that the full height strip-fin channel results in a more non-uniform spanwise heat transfer distribution than the partial height strip-fin channel. Both trailing and leading surface heat transfer coefficients are enhanced under rotation conditions. The 2mm height partial strip-fin channel provided the best thermal performance, and it is comparable to the performance of the converging channels with partial length circular pins. The strip-fin channel can be a design option when the pressure drop penalty is a major concern.

2022 ◽  
pp. 1-32
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract A wide variety of pin-fins have been used to enhance heat transfer in internal cooling channels. However, due to their large blockage in the flow direction, they result in an undesirable high pressure drop. This experimental study aims to reduce pressure drop while increasing the heat transfer surface area by utilizing strip-fins in converging internal cooling channels. The channel is designed with a trapezoidal cross-section, converges in both transverse and longitudinal directions, and is also skewed β=120° with respect to the direction of rotation in order to model a trailing edge cooling channel. Only the leading and trailing surfaces of the channel are instrumented, and each surface is divided into eighteen isolated copper plates to measure the regionally averaged heat transfer coefficient. Utilizing pressure taps at the inlet and outlet of the channel, the pressure drop is obtained. Three staggered arrays of strip-fins are investigated: one full height configuration and two partial fin height arrangements (Sz=2mm and 1mm). In all cases, the strip fins are 2mm wide (W) and 10mm long (Lf ) in the flow direction. The fins are spaced such that Sy/Lf = 1 in the streamwise direction. However, due to the convergence, the spanwise spacing, Sx/W, was varied from 8 to 6.2 along the channel. The rotation number of the channel varied up to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300rpm. It is found that


2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Lesley M. Wright ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

Heat transfer coefficients are experimentally measured in a rotating cooling channel used to model an internal cooling passage near the trailing edge of a gas turbine blade. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh=2.22cm, Ac=7.62cm2). The Reynolds number of the coolant varies from 10,000 to 40,000. By varying the rotational speed of the channel, the rotation number and buoyancy parameter range from 0 to 1.0 and 0 to 3.5, respectively. Significant variation of the heat transfer coefficients in both the spanwise and streamwise directions is apparent. Spanwise variation is the result of the wedge-shaped design, and streamwise variation is the result of the sharp entrance into the channel and the 180deg turn at the outlet of the channel. With the channel rotating at 135° with respect to the direction of rotation, the heat transfer coefficients are enhanced on every surface of the channel. Both the nondimensional rotation number and buoyancy parameter have proven to be excellent parameters to quantify the effect of rotation over the extended ranges achieved in this study.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract In the current study, the heat transfer and pressure drop characteristics of a rotating, partial pin-finned, cooling channel that has a trapezoidal cross section and converges from the hub to tip in both the streamwise and spanwise directions are experimentally investigated. To model the geometry of an internal trailing edge cooling passage, the channel is oriented with respect to the direction of rotation (β = 120 deg). Isolated copper plates are used to obtain regionally averaged heat transfer coefficients on the leading and trailing surfaces. Pressure drop is measured using pressure taps placed at the inlet and outlet of the channel. Utilizing Dp = 5 mm diameter pins, a staggered array is created. For this array, the streamwise pin-spacing, Sy/Dp = 2.1, was kept constant; however, the spanwise pin-spacing, Sx/Dp, was varied from the hub to tip between 3 and 2.6 due to the channel convergence. Experiments were conducted for two partial pin-fin sets having pin length-to-diameter ratios of Sz/Dp = 0.4 and 0.2. The rotation number was varied from 0 to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300 rpm. A significant decrease in pressure loss and a slight reduction in heat transfer enhancement are observed with the use of partial pin-fins compared with the previously reported full pin-fin converging channel study. This provides better thermal performances of the partial pin-fin arrays compared with the full pin-fin array, in the converging channels.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Marco Pievaroli ◽  
Lorenzo Tarchi ◽  
Alberto Ceccherini ◽  
...  

In the present paper the combined effects of rotation and channel orientation on heat transfer and pressure drop along two scaled up matrix geometries suitable for trailing edge cooling of gas turbine airfoils are investigated. Experimental tests were carried out under static and rotating conditions. Rotating tests were performed for two different orientations of the matrix channel with respect to the rotating plane: 0deg and 30deg. This latter configuration is representative of the exit angle of a real gas turbine blade. Test models are designed in order to replicate an internal geometry suitable for blade trailing edge cooling, with a 90deg turning flow before entering the matrix array which has an axial development. Both the investigated geometries have a cross angle of 45deg between ribs and different values of sub-channels and rib thickness: one has four sub-channels and lower rib thickness (open area 84.5%), one has six sub-channels and higher rib thickness (open area 53.5%). Both geometries have a converging angle of 11.4deg. Matrix models have been axially divided in 5 aluminum elements per side in order to evaluate the heat transfer coefficient in 5 different locations in the main flow direction. Metal temperature was measured with embedded thermocouples and thin-foil heaters were used to provide a constant heat flux during each test. Heat transfer coefficients were measured applying a steady state technique based on a regional average method and varying the sub-channel Reynolds number Res from 2000 to 10000 and the sub-channel Rotation number Ros from 0 to 0.250 in order to have both Reynolds and Rotation number similitude with the real conditions. A post-processing procedure, which takes into account the temperature gradients within the model, was developed to correctly compute average heat transfer coefficients starting from discrete temperature measurements.


Author(s):  
Lesley M. Wright ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

Heat transfer coefficients are experimentally measured in a rotating cooling channel used to model an internal cooling passage near the trailing edge of a gas turbine blade. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh = 2.22cm, Ac = 7.62cm2). The Reynolds number of the coolant varies from 10,000 to 40,000. By varying the rotational speed of the channel, the rotation number and buoyancy parameter range from 0–1.0 and 0–3.5, respectively. Significant variation of the heat transfer coefficients in both the spanwise and streamwise directions is apparent. Spanwise variation is the results of the wedge-shaped design, and streamwise variation is the result of the sharp entrance into the channel and the 180° at the outlet of the channel. With the channel rotating at 135° with respect to the direction of rotation, the heat transfer coefficients are enhanced on every surface of the channel. Both the non-dimensional rotation number and buoyancy parameter have proven to be excellent parameters to quantify the effect of rotation over the extended ranges achieved in this study.


Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract The heat transfer and pressure drop characteristics of a rotating cooling channel that has an angled trapezoidal cross-section and converges from the hub to tip in both the streamwise and spanwise directions are experimentally investigated. The channel is oriented 120° with respect to the direction of rotation to model the geometry of an internal, trailing edge cooling passage. Both the leading and trailing sides of the channel are divided into three and six regions in the spanwise and streamwise directions, respectively. The copper plate method is used to obtain regionally averaged heat transfer coefficients. The pressure drop is measured utilizing pressure taps placed at the inlet and outlet of the channel. Experiments were conducted with the inlet Reynolds number ranging from 10,000 to 40,000. The rotational speed varies from 0 rpm to 300 rpm, resulting in the highest rotation number of 0.21. The effects of full pin-fins on the heat transfer and pressure drop characteristics are obtained and compared to the smooth surface converging channel results. The impact of the convergence, which causes variations of flow and geometric parameters through the passage, such as aspect ratio, Reynolds number, and rotation number, on the heat transfer coefficients and pressure drop are addressed. Results show that due to the 120° channel orientation, rotation has a positive impact on the leading and trailing surface heat transfer. Furthermore, the convergence decreases the aspect ratio while increasing Reynolds number. The convergence significantly enhances heat transfer on both the leading and trailing surfaces along the streamwise and spanwise directions. The convergence also reduces the rotation effect in the streamwise direction for a given mass flow rate.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract The heat transfer and pressure drop characteristics of a rotating cooling channel that has an angled trapezoidal cross section and converges from the hub to the tip in both the streamwise and spanwise directions are experimentally investigated. The channel is oriented 120 deg with respect to the direction of rotation to model the geometry of an internal, trailing-edge cooling passage. Both the leading and trailing sides of the channel are divided into three and six regions in the spanwise and streamwise directions, respectively. The copper plate method is used to obtain regionally averaged heat transfer coefficients. The pressure drop is measured using pressure taps placed at the inlet and outlet of the channel. Experiments were conducted with the inlet Reynolds number ranging from 10,000 to 40,000. The rotational speed varies from 0 rpm to 300 rpm, resulting in the highest rotation number of 0.21. The effects of full pin-fins on the heat transfer and pressure drop characteristics are obtained and compared to the smooth surface converging channel results. The impact of the convergence, which causes variations of flow and geometric parameters through the passage, such as aspect ratio, Reynolds number, and rotation number, on the heat transfer coefficients and pressure drop are addressed. Results show that due to the 120 deg channel orientation, the rotation has a positive impact on the leading and trailing surface heat transfer. Furthermore, the convergence decreases the aspect ratio while increasing the Reynolds number. The convergence significantly enhances heat transfer on both the leading and trailing surfaces along the streamwise and spanwise directions. The convergence also reduces the rotation effect in the streamwise direction for a given mass flow rate.


Author(s):  
Mohammad Taslim ◽  
Joseph S. Halabi

Local and average heat transfer coefficients and friction factors were measured in a test section simulating the trailing edge cooling cavity of a turbine airfoil. The test rig with a trapezoidal cross sectional area was rib-roughened on two opposite sides of the trapezoid (airfoil pressure and suction sides) with tapered ribs to conform to the cooling cavity shape and had a 22-degree tilt in the flow direction upstream of the ribs that affected the heat transfer coefficients on the two rib-roughened surfaces. The radial cooling flow traveled from the airfoil root to the tip while exiting through 22 cooling holes along the airfoil trailing edge. Two rib geometries, with and without the presence of the trailing-edge cooling holes, were examined. The numerical model contained the entire trailing-edge channel, ribs and trailing-edge cooling holes to simulate exactly the tested geometry. A pressure-correction based, multi-block, multi-grid, unstructured/adaptive commercial software was used in this investigation. Realizable k–ε turbulence model in conjunction with enhanced wall treatment approach for the near wall regions, was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. Comparisons are made between the experimental and numerical results.


Author(s):  
J. Kruekels ◽  
S. Naik ◽  
A. Lerch ◽  
A. Sedlov

The trailing edge sections of gas turbine vanes and blades are generally subjected to extremely high heat loads due to the combined effects of high external accelerating Mach numbers and gas temperatures. In order to maintain the metal temperatures of these trailing edges to a level, which fulfills the mechanical integrity of the parts, highly efficient cooling of the trailing edges is required without increasing the coolant consumption, as the latter has a detrimental effect on the overall gas turbine performance. In this paper the characteristics of the heat transfer and pressure drop of two novel integrated pin bank configurations were investigated. These include a pin bank with conical pins and a pin bank consisting of cylindrical pins and intersecting broken turbulators. As baseline case, a pin bank with cylindrical pins was studied as well. All investigations were done in a converging channel in order to be consistent with the real part. The heat transfer and pressure drop of all the pin banks were investigated initially with the use of numerical predictions and subsequently in a scaled experimental wind tunnel. The experimental study was conducted for a range of operational Reynolds numbers. The TLC (thermochromic liquid crystal) method was used to measure the detailed heat transfer coefficients in scaled Perspex models representing the various pin bank configurations. Pressure taps were located at several positions within the test sections. Both local and average heat transfer coefficients and pressure loss coefficients were determined. The measured and predicted results showed that the local internal heat transfer coefficient increases in the flow direction. This was due to the flow acceleration in the converging channel. Furthermore, both the broken ribs and the conical pin banks resulted in higher heat transfer coefficients compared with the baseline cylindrical pins. The conical pins produced the highest average internal heat transfer coefficients in contrast to the pins with the broken ribs, though this was also associated with a higher pressure drop.


Author(s):  
Hao-Wei Wu ◽  
Hootan Zirakzadeh ◽  
Je-Chin Han ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

A three-passage internal cooling test model with a 180° U-bend at the hub turn portion was used to perform the investigation. The flow is radially inward at the second passage, while it is radially outward at the third passage after the U-bend. Measurement was conducted at the second and the third passages. Aspect ratio of the second passage is 2:1 (AR=2), while the third passage is wedge-shaped with side wall slot ejections. The squared ribs with P/e = 8, e/Dh = 0.1, α = 45°, were configured on both leading and trailing surfaces along the second passage, and also the inner half of the third passage. Three rows of cylinder-shaped pin-fins with diameter of 3 mm were placed at both leading and trailing surfaces of the outer half of the third passage. The results showed that the rotating effects on radial inward flow and radial outward flow are consistent with previous studies. When there is no turning vane, heat transfer on the leading surface at hub turn region is increased by rotation, while it is decreased on the trailing surface. The presence of turning vane reduces the effect of rotation on hub turn portion. Ejection and pin-fin array enhance heat transfer at the third passage. Even though there is mass loss of cooling air along the third passage with side wall slot ejection, the heat transfer coefficient remains high until the end of the passage. Correlation between regional heat transfer coefficients and rotation numbers is presented for both cases of with and without turning vane.


Sign in / Sign up

Export Citation Format

Share Document