Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers

2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Lesley M. Wright ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

Heat transfer coefficients are experimentally measured in a rotating cooling channel used to model an internal cooling passage near the trailing edge of a gas turbine blade. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh=2.22cm, Ac=7.62cm2). The Reynolds number of the coolant varies from 10,000 to 40,000. By varying the rotational speed of the channel, the rotation number and buoyancy parameter range from 0 to 1.0 and 0 to 3.5, respectively. Significant variation of the heat transfer coefficients in both the spanwise and streamwise directions is apparent. Spanwise variation is the result of the wedge-shaped design, and streamwise variation is the result of the sharp entrance into the channel and the 180deg turn at the outlet of the channel. With the channel rotating at 135° with respect to the direction of rotation, the heat transfer coefficients are enhanced on every surface of the channel. Both the nondimensional rotation number and buoyancy parameter have proven to be excellent parameters to quantify the effect of rotation over the extended ranges achieved in this study.

Author(s):  
Lesley M. Wright ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

Heat transfer coefficients are experimentally measured in a rotating cooling channel used to model an internal cooling passage near the trailing edge of a gas turbine blade. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh = 2.22cm, Ac = 7.62cm2). The Reynolds number of the coolant varies from 10,000 to 40,000. By varying the rotational speed of the channel, the rotation number and buoyancy parameter range from 0–1.0 and 0–3.5, respectively. Significant variation of the heat transfer coefficients in both the spanwise and streamwise directions is apparent. Spanwise variation is the results of the wedge-shaped design, and streamwise variation is the result of the sharp entrance into the channel and the 180° at the outlet of the channel. With the channel rotating at 135° with respect to the direction of rotation, the heat transfer coefficients are enhanced on every surface of the channel. Both the non-dimensional rotation number and buoyancy parameter have proven to be excellent parameters to quantify the effect of rotation over the extended ranges achieved in this study.


Author(s):  
Yao-Hsien Liu ◽  
Michael Huh ◽  
Lesley M. Wright ◽  
Je-Chin Han

Heat transfer coefficients are experimentally measured in a rotating cooling channel with slot ejection. This test section is used to model an internal cooling passage near the trailing edge of a gas turbine blade where the spent coolant exhausts through the slot to the mainstream flow. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh = 2.22cm, Ac = 7.62cm2). Due to the discharging of coolant through the slots, the local mass flow rate decreases along the streamwise direction. The effect of slot ejection enhances the heat transfer near the narrow side of the channel, while heat transfer on the wide side decreases. The inlet Reynolds number of the coolant varies from 10000 to 40000 and the rotational speeds varies from 0 to 500 rpm. The inlet rotation number is from 0 – 1.0. The local rotation number and buoyancy parameter vary by the rotational speeds and the local Reynolds number in each region. The effect of rotation in this wedge-shaped channel with slot ejection is presented in this paper. This study shows that the rotation number and buoyancy parameter are good parameters to quantify the effect of rotation with slot ejection over the extended ranges achieved in this study.


2021 ◽  
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract A wide variety of pin-fins have been used to enhance heat transfer in internal cooling channels. However, due to their large blockage in the flow direction, they result in an undesirable high pressure drop. This experimental study aims to reduce pressure drop while increasing the heat transfer surface area by utilizing strip-fins in converging internal cooling channels. The channel is designed with a trapezoidal cross-section, converges in both transverse and longitudinal directions, and is also skewed β = 120° with respect to the direction of rotation in order to model a trailing edge cooling channel. Only the leading and trailing surfaces of the channel are instrumented, and each surface is divided into eighteen isolated copper plates to measure the regionally averaged heat transfer coefficient. Utilizing pressure taps at the inlet and outlet of the channel, the pressure drop is obtained. Three staggered arrays of strip-fins are investigated: one full height configuration and two partial fin height arrangements (Sz = 2mm and 1mm). In all cases, the strip fins are 2mm wide (W) and 10mm long (Lf) in the flow direction. The fins are spaced such that Sy/Lf = 1 in the streamwise direction. However, due to the convergence the spanwise spacing Sx/W, was varied from 8 to 6.2 along the channel. The rotation number of the channel varied up to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300rpm. It is found that the full height strip-fin channel results in a more non-uniform spanwise heat transfer distribution than the partial height strip-fin channel. Both trailing and leading surface heat transfer coefficients are enhanced under rotation conditions. The 2mm height partial strip-fin channel provided the best thermal performance, and it is comparable to the performance of the converging channels with partial length circular pins. The strip-fin channel can be a design option when the pressure drop penalty is a major concern.


Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract The heat transfer and pressure drop characteristics of a rotating cooling channel that has an angled trapezoidal cross-section and converges from the hub to tip in both the streamwise and spanwise directions are experimentally investigated. The channel is oriented 120° with respect to the direction of rotation to model the geometry of an internal, trailing edge cooling passage. Both the leading and trailing sides of the channel are divided into three and six regions in the spanwise and streamwise directions, respectively. The copper plate method is used to obtain regionally averaged heat transfer coefficients. The pressure drop is measured utilizing pressure taps placed at the inlet and outlet of the channel. Experiments were conducted with the inlet Reynolds number ranging from 10,000 to 40,000. The rotational speed varies from 0 rpm to 300 rpm, resulting in the highest rotation number of 0.21. The effects of full pin-fins on the heat transfer and pressure drop characteristics are obtained and compared to the smooth surface converging channel results. The impact of the convergence, which causes variations of flow and geometric parameters through the passage, such as aspect ratio, Reynolds number, and rotation number, on the heat transfer coefficients and pressure drop are addressed. Results show that due to the 120° channel orientation, rotation has a positive impact on the leading and trailing surface heat transfer. Furthermore, the convergence decreases the aspect ratio while increasing Reynolds number. The convergence significantly enhances heat transfer on both the leading and trailing surfaces along the streamwise and spanwise directions. The convergence also reduces the rotation effect in the streamwise direction for a given mass flow rate.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract The heat transfer and pressure drop characteristics of a rotating cooling channel that has an angled trapezoidal cross section and converges from the hub to the tip in both the streamwise and spanwise directions are experimentally investigated. The channel is oriented 120 deg with respect to the direction of rotation to model the geometry of an internal, trailing-edge cooling passage. Both the leading and trailing sides of the channel are divided into three and six regions in the spanwise and streamwise directions, respectively. The copper plate method is used to obtain regionally averaged heat transfer coefficients. The pressure drop is measured using pressure taps placed at the inlet and outlet of the channel. Experiments were conducted with the inlet Reynolds number ranging from 10,000 to 40,000. The rotational speed varies from 0 rpm to 300 rpm, resulting in the highest rotation number of 0.21. The effects of full pin-fins on the heat transfer and pressure drop characteristics are obtained and compared to the smooth surface converging channel results. The impact of the convergence, which causes variations of flow and geometric parameters through the passage, such as aspect ratio, Reynolds number, and rotation number, on the heat transfer coefficients and pressure drop are addressed. Results show that due to the 120 deg channel orientation, the rotation has a positive impact on the leading and trailing surface heat transfer. Furthermore, the convergence decreases the aspect ratio while increasing the Reynolds number. The convergence significantly enhances heat transfer on both the leading and trailing surfaces along the streamwise and spanwise directions. The convergence also reduces the rotation effect in the streamwise direction for a given mass flow rate.


Author(s):  
Christian Egger ◽  
Jens von Wolfersdorf ◽  
Martin Schnieder

In this paper a transient method for measuring heat transfer coefficients in internal cooling systems using infrared thermography is applied. The experiments are performed with a two-pass internal cooling channel connected by a 180° bend. The leading edge and the trailing edge consist of trapezoidal and nearly rectangular cross sections, respectively, to achieve an engine-similar configuration. Within the channels rib arrangements are considered for heat transfer enhancement. The test model is made of metallic material. During the experiment the cooling channels are heated by the internal flow. The surface temperature response of the cooling channel walls is measured on the outer surface by infrared thermography. Additionally, fluid temperatures as well as fluid and solid properties are determined for the data analysis. The method for determining the distribution of internal heat transfer coefficients is based on a lumped capacitance approach which considers lateral conduction in the cooling system walls as well as natural convection and radiation heat transfer on the outer surface. Because of time-dependent effects a sensitivity analysis is performed to identify optimal time periods for data analysis. Results are compared with available literature data.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Andrew F. Chen ◽  
Hao-Wei Wu ◽  
Nian Wang ◽  
Je-Chin Han

Experimental investigation on rotation and turning vane effects on heat transfer was performed in a two-pass rectangular internal cooling channel. The channel has an aspect ratio of AR = 2:1 and a 180 deg tip-turn, which is a scaled up model of a typical internal cooling passage of gas turbine airfoils. The leading surface (LS) and trailing surface (TS) are roughened with 45 deg angled parallel ribs (staggered P/e = 8, e/Dh = 0.1). Tests were performed in a pressurized vessel (570 kPa) where higher rotation numbers (Ro) can be achieved with a maximum Ro = 0.42. Five Reynolds numbers (Re) were examined (Re = 10,000–40,000). At each Reynolds number, five rotational speeds (Ω = 0–400 rpm) were considered. Results showed that rotation effects are stronger in the tip regions as compared to other surfaces. Heat transfer enhancement up to four times was observed on the tip wall at the highest rotation number. However, heat transfer enhancement is reduced to about 1.5 times with the presence of a tip turning vane at the highest rotation number. Generally, the tip turning vane reduces the effects of rotation, especially in the turn portion.


Author(s):  
Yao-Hsien Liu ◽  
Michael Huh ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Heat transfer and pressure drop have been experimentally investigated in an equilateral triangular channel (Dh = 1.83cm), which can be used to simulate the internal cooling passage near the leading edge of a gas turbine blade. Three different rib configurations (45°, inverted 45°, and 90°) were tested at four different Reynolds numbers (10000–40000), each with five different rotational speeds (0–400 rpm). The rib pitch-to-height (P/e) ratio is 8 and the height-to-hydraulic diameter (e/Dh) ratio is 0.087 for every rib configuration. The rotation number and buoyancy parameter achieved in this study were 0–0.58 and 0–2.3, respectively. Both the rotation number and buoyancy parameter have been correlated to predict the rotational heat transfer in the ribbed equilateral triangular channel. For the stationary condition, staggered 45° angled ribs show the highest heat transfer enhancement. However, staggered 45° angled ribs and 90° ribs have the higher comparable heat transfer enhancement at rotating condition near the blade leading edge region.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract In the current study, the heat transfer and pressure drop characteristics of a rotating, partial pin-finned, cooling channel that has a trapezoidal cross section and converges from the hub to tip in both the streamwise and spanwise directions are experimentally investigated. To model the geometry of an internal trailing edge cooling passage, the channel is oriented with respect to the direction of rotation (β = 120 deg). Isolated copper plates are used to obtain regionally averaged heat transfer coefficients on the leading and trailing surfaces. Pressure drop is measured using pressure taps placed at the inlet and outlet of the channel. Utilizing Dp = 5 mm diameter pins, a staggered array is created. For this array, the streamwise pin-spacing, Sy/Dp = 2.1, was kept constant; however, the spanwise pin-spacing, Sx/Dp, was varied from the hub to tip between 3 and 2.6 due to the channel convergence. Experiments were conducted for two partial pin-fin sets having pin length-to-diameter ratios of Sz/Dp = 0.4 and 0.2. The rotation number was varied from 0 to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300 rpm. A significant decrease in pressure loss and a slight reduction in heat transfer enhancement are observed with the use of partial pin-fins compared with the previously reported full pin-fin converging channel study. This provides better thermal performances of the partial pin-fin arrays compared with the full pin-fin array, in the converging channels.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Marco Pievaroli ◽  
Lorenzo Tarchi ◽  
Alberto Ceccherini ◽  
...  

In the present paper the combined effects of rotation and channel orientation on heat transfer and pressure drop along two scaled up matrix geometries suitable for trailing edge cooling of gas turbine airfoils are investigated. Experimental tests were carried out under static and rotating conditions. Rotating tests were performed for two different orientations of the matrix channel with respect to the rotating plane: 0deg and 30deg. This latter configuration is representative of the exit angle of a real gas turbine blade. Test models are designed in order to replicate an internal geometry suitable for blade trailing edge cooling, with a 90deg turning flow before entering the matrix array which has an axial development. Both the investigated geometries have a cross angle of 45deg between ribs and different values of sub-channels and rib thickness: one has four sub-channels and lower rib thickness (open area 84.5%), one has six sub-channels and higher rib thickness (open area 53.5%). Both geometries have a converging angle of 11.4deg. Matrix models have been axially divided in 5 aluminum elements per side in order to evaluate the heat transfer coefficient in 5 different locations in the main flow direction. Metal temperature was measured with embedded thermocouples and thin-foil heaters were used to provide a constant heat flux during each test. Heat transfer coefficients were measured applying a steady state technique based on a regional average method and varying the sub-channel Reynolds number Res from 2000 to 10000 and the sub-channel Rotation number Ros from 0 to 0.250 in order to have both Reynolds and Rotation number similitude with the real conditions. A post-processing procedure, which takes into account the temperature gradients within the model, was developed to correctly compute average heat transfer coefficients starting from discrete temperature measurements.


Sign in / Sign up

Export Citation Format

Share Document