Simulation of Nano-Scale Multi-Fingered PD/SOI MOSFETs Using the Boltzmann Transport Equation

Volume 4 ◽  
2004 ◽  
Author(s):  
Jose´ A. Pascual-Gutie´rrez ◽  
Jayathi Y. Murthy ◽  
Raymond Viskanta ◽  
Rajiv V. Joshi ◽  
Ching-Te K. Chuang

This work uses a gray, a semi-gray, and a non-gray model based on the Boltzmann Transport Equation (BTE) in the relaxation time approximation to compute the temperature distribution in a nano-scale multi-finger, PD/SOI nMOSFET with copper interconnects. The BTE models were successfully incorporated in CFD software, Fluent 6.1. The BTE is used in the device layer, whereas in other regions of the device, such as the silicon substrate, buried oxide, gate oxide, poly-gate, and metal interconnects, the Fourier heat conduction equation is employed. The BTE is coupled with the heat conduction equation at the interfaces using the diffuse mismatch model (DMM). Heat dissipation in the channel region of the FET and in the metal lines of the device is specified based on circuit simulations for a clock buffer used in a microprocessor. The computed results for the temperature distribution in the multi-finger NFET using the different approaches are compared with simulations that employ the classical heat conduction equation in the entire domain. The comparisons demonstrate that the broad temperature fields in the transistor are primarily determined by the overall thermal resistances due to the various device structures; channel temperature, however, is determined in large part by sub-continuum effects. The need for direct measurements of channel temperature rather indirect gate temperature measurements is pointed out as well.

1980 ◽  
Vol 102 (1) ◽  
pp. 121-125 ◽  
Author(s):  
S. K. Fraley ◽  
T. J. Hoffman ◽  
P. N. Stevens

A new approach in the use of Monte Carlo to solve heat conduction problems is developed using a transport equation approximation to the heat conduction equation. A variety of problems is analyzed with this method and their solutions are compared to those obtained with analytical techniques. This Monte Carlo approach appears to be limited to the calculation of temperatures at specific points rather than temperature distributions. The method is applicable to the solution of multimedia problems with no inherent limitations as to the geometric complexity of the problem.


1998 ◽  
Vol 545 ◽  
Author(s):  
G. Chen ◽  
S. G. Volz ◽  
T. Borca-Tasciuc ◽  
T. Zeng ◽  
D. Song ◽  
...  

AbstractUnderstanding phonon heat conduction mechanisms in low-dimensional structures is of critical importance for low-dimensional thermoelectricity. In this paper, we discuss heat conduction mechanisms in two-dimensional (2D) and one-dimensional (1D) structures. Models based on both the phonon wave picture and particle picture are developed for heat conduction in 2D superlattices. The phonon wave model, based on the acoustic wave equations, includes the effects of phonon interference and tunneling, while the particle model, based on the Boltzmann transport equation, treats the internal as well interface scattering of phonons. For 1D systems, both the Boltzmann transport equation and molecular dynamics simulation approaches are employed. Comparing the modeling results with experimental data suggest that the interface scattering of phonons plays a crucial role in the thermal conductivity of low-dimensional structures. We also discuss the minimum thermal conductivity of low-dimensional structures based on a generalized thermal conductivity integral, and suggest that the minimum thermal conductivities of low-dimensional systems may differ from those of their corresponding bulk materials. The discussion leads to alternative ways to reduce thermal conductivity based on the propagating phonon modes.


Author(s):  
Syed A. Ali ◽  
Gautham Kollu ◽  
Sandip Mazumder ◽  
P. Sadayappan

Non-equilibrium heat conduction, as occurring in modern-day sub-micron semiconductor devices, can be predicted effectively using the Boltzmann Transport Equation (BTE) for phonons. In this article, strategies and algorithms for large-scale parallel computation of the phonon BTE are presented. An unstructured finite volume method for spatial discretization is coupled with the control angle discrete ordinates method for angular discretization. The single-time relaxation approximation is used to treat phonon-phonon scattering. Both dispersion and polarization of the phonons are accounted for. Three different parallelization strategies are explored: (a) band-based, (b) direction-based, and (c) hybrid band/cell-based. Subsequent to validation studies in which silicon thin-film thermal conductivity was successfully predicted, transient simulations of non-equilibrium thermal transport were conducted in a three-dimensional device-like silicon structure, discretized using 604,054 tetrahedral cells. The angular space was discretized using 400 angles, and the spectral space was discretized into 40 spectral intervals (bands). This resulted in ∼9.7×109 unknowns, which are approximately 3 orders of magnitude larger than previously reported computations in this area. Studies showed that direction-based and hybrid band/cell-based parallelization strategies resulted in similar total computational time. However, the parallel efficiency of the hybrid band/cell-based strategy — about 88% — was found to be superior to that of the direction-based strategy, and is recommended as the preferred strategy for even larger scale computations.


Author(s):  
Mingtian Xu ◽  
Haiyan Hu

A ballistic-diffusive heat conduction model is derived from the Boltzmann transport equation by a coarse-graining approach developed in the present study. By taking into account of the lagging effect, this model avoids the infinite heat propagation speed implied by the classical Fourier law. By expressing the heat conductivity as a function of the Knudsen number, it accounts for the size effect of the nanoscale heat conduction. The variation of the obtained effective heat conductivity with respect to the characteristic length shows an agreement with the experimental results for thin silicon films and nanowires in the nanoscale regime.


Sign in / Sign up

Export Citation Format

Share Document