High Rayleigh Number Flows in a Cubical Enclosure

2005 ◽  
Author(s):  
Lucas Vargas ◽  
Ikram Ahmed ◽  
David N. Koert

High Rayleigh number (Ra) natural convective flows in cubical enclosures were investigated using Direct Numerical Simulation (DNS). Here the bottom of the cavity was heated while the top was cooled, each maintained at a different constant temperature, with the sidewalls insulated. The Prandtl number was maintained at 2.5 and the Ra varied between 106 and 108. In order to observe the transition to turbulence with increasing Ra, power spectrum slopes were compared with Kolmogorov’s −5/3 rule for turbulent flows. At the higher Ra studied, the flows showed characteristics typically attributed to “chaotic” flows. However, the transition to full turbulence was not observed, which is expected around Ra ∼ 109 and may not be predicted using DNS with the state-of-the-art computing technology.

This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


2009 ◽  
Vol 41 (6) ◽  
pp. 065001 ◽  
Author(s):  
Daniel Fuster ◽  
Gilou Agbaglah ◽  
Christophe Josserand ◽  
Stéphane Popinet ◽  
Stéphane Zaleski

1995 ◽  
Vol 48 (4) ◽  
pp. 189-212 ◽  
Author(s):  
G. J. Brereton ◽  
R. R. Mankbadi

Turbulent flow which undergoes organized temporal unsteadiness is a subject of great importance to unsteady aerodynamic and thermodynamic devices. Of the many classes of unsteady flows, those bounded by rigid smooth walls are particularly amenable to fundamental studies of unsteady turbulence and its modeling. These flows are presently being given increased attention as interest grows in the prospect of predicting non-equilibrium turbulence and because of their relevance to turbulence–acoustics interactions, in addition to their importance as unsteady flows in their own right. It is therefore timely to present a review of recent advances in this area, with particular emphasis placed on physical understanding of the turbulent processes in these flows and the development of turbulence models to predict them. A number of earlier reviews have been published on unsteady turbulent flows, which have tended to focus on specific aspects of certain flows. This review is intended to draw together, from the diverse literature on the subject, information on fundamental aspects of these flows which are relevant to improved understanding and development of predictive models. Of particular relevance are issues of instability and transition to turbulence in reciprocating flows, the robustness of coherent structures in wall-bounded flows to forced perturbations (in contrast to the relative ease of manipulation in free shear flows), unsteady scalar transport, improved measurement technology, recent contributions to target data for model testing and the quasi-steady and non-steady rapid distortion approaches to turbulence modeling in these flows. The present article aims to summarize recent contributions to this research area, with a view to consolidating comprehension of the well-known basics of these flows, and drawing attention to critical gaps in information which restrict our understanding of unsteady turbulent flows.


2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Giancarlo Alfonsi

The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document