Enhancement of Natural Convection Heat Transfer Rate in Internal Compressible Flows by Inserting Stationary Inserts

Author(s):  
Emad Y. Tanbour ◽  
Ramin K. Rahmani

Enhancement of the natural and forced convection heat transfer has been the subject of numerous academic and industrial studies. Air blenders, mechanical agitators, and static mixers have been developed to increase the forced convection heat transfer rate in compressible and incompressible flows. Stationary inserts can be efficiently employed as heat transfer enhancement device in the natural convection systems with compressible flow. Generally, a stationary heat transfer enhancement insert consists of a number of equal motionless units, placed on the inside of a pipe or channel in order to control flowing fluid streams. These devices have low maintenance and operating costs, low space requirements and no moving parts. A range of designs exists for a wide range of specific applications. The shape of the elements determines the character of the fluid motion and thus determines thermal effectiveness of the insert. There are several key parameters that may be considered in the design procedure of a heat transfer enhancement insert, which lead to significant differences in the performance of various designs. An ideal insert for natural conventional heat transfer of compressible flow applications provides a higher rate of heat transfer and a thermally homogenous fluid with minimized pressure drop and required space. To choose an insert for a given application or in order to design a new insert, besides experimentation, it is possible to use computational fluid dynamics (CFD) tools to study insert performance. This paper presents the outcomes of the numerical studies by the authors on an industrial stationary heat transfer enhancement insert and illustrates how a heat transfer enhancement insert can improve the heat transfer in a buoyancy driven compressible flow. The numerical predictions were validated using experimental data. Using different measuring tools, the global performance of the insert and the impact of the geometrical parameters are studied in order to choose the most effective design for a given application.

Author(s):  
Emad Y. Tanbour ◽  
Ramin K. Rahmani

Enhancement of natural and forced convectional heat transfer rate has been the subject of several academic and industrial studies. Air blenders, mechanical agitators, and static mixers have been developed to increase the forced convectional heat transfer rate in compressible and incompressible flows. Stationary devices can be efficiently employed as heat transfer enhancement tool in the natural convection systems with compressible flow. Generally, a stationary heat transfer enhancement insert consists of a number of equal motionless units, placed on the inside of a pipe or channel in order to control flowing fluid streams. These devices have low maintenance and operating costs, low space requirements and no moving parts. A range of designs exist for a wide range of specific applications. The shape of the elements determines the character of the fluid motion and thus determines thermal effectiveness of the heat transfer enhancement insert. There are several key parameters that may be considered in the design procedure of a heat transfer enhancement insert, which lead to significant differences in the performance of various designs. An ideal heat transfer enhancement insert for natural conventional heat transfer of compressible flow applications provides a higher rate of heat transfer and a thermally homogenous fluid with minimized pressure drop and required space. This paper presents the outcomes of the experimental studies by the authors on two industrial stationary inserts and illustrates how a heat transfer enhancement insert can improve the heat transfer in a buoyancy driven compressible flow. Using different measuring tools, the global performance of the inserts are studied in order to choose the most effective design.


2019 ◽  
Vol 29 (10) ◽  
pp. 3822-3856 ◽  
Author(s):  
Nirmal Kumar Manna ◽  
Nirmalendu Biswas ◽  
Pallab Sinha Mahapatra

Purpose This study aims to enhance natural convection heat transfer for a porous thermal cavity. Multi-frequency sinusoidal heating is applied at the bottom of a porous square cavity, considering top wall adiabatic and cooling through the sidewalls. The different frequencies, amplitudes and phase angles of sinusoidal heating are investigated to understand their major impacts on the heat transfer characteristics. Design/methodology/approach The finite volume method is used to solve the governing equations in a two-dimensional cavity, considering incompressible laminar flow, Boussinesq approximation and Brinkman–Forchheimer–Darcy model. The mean-temperature constraint is applied for enhancement analysis. Findings The multi-frequency heating can markedly enhance natural convection heat transfer even in the presence of porous medium (enhancement up to ∼74 per cent). Only the positive phase angle offers heat transfer enhancement consistently in all frequencies (studied). Research limitations/implications The present research idea can usefully be extended to other multi-physical areas (nanofluids, magneto-hydrodynamics, etc.). Practical implications The findings are useful for devices working on natural convection. Originality/value The enhancement using multi-frequency heating is estimated under different parametric conditions. The effect of different frequencies of sinusoidal heating, along with the uniform heating, is collectively discussed from the fundamental point of view using the average and local Nusselt number, thermal and hydrodynamic boundary layers and heatlines.


Author(s):  
Emad Y. Tanbour ◽  
Ramin K. Rahmani

Enhancement of the natural and forced convection heat transfer has been the subject of numerous academic and industrial studies. Air blenders, mechanical agitators, and static mixers have been developed to increase the forced convection heat transfer rate in compressible and incompressible flows. Stationary inserts can be efficiently employed as heat transfer enhancement devices in the natural convection systems. Generally, a stationary heat transfer enhancement insert consists of a number of equal motionless segments, placed inside of a pipe in order to control flowing fluid streams. These devices have low maintenance and operating costs, low space requirements and no moving parts. A range of designs exists for a wide range of specific applications. The shape of the elements determines the character of the fluid motion and thus determines thermal effectiveness of the insert. There are several key parameters that may be considered in the design procedure of a heat transfer enhancement insert, which lead to significant differences in the performance of various designs. An ideal insert, for natural conventional heat transfer in compressible flow applications, provides a higher rate of heat transfer and a thermally homogenous fluid with minimized pressure drop and required space. To choose an insert for a given application or in order to design a new insert, besides experimentation, it is possible to use Computational Fluid Dynamics to study the insert performance. This paper presents the outcomes of the numerical studies on industrial stationary heat transfer enhancement inserts and illustrates how a heat transfer enhancement insert can improve the heat transfer in buoyancy driven compressible flows. Using different measuring tools, thermal performance of two different inserts (twisted and helix) are studied. It is shown that the helix design leads to a higher rate of heat transfer, while causes a lower pressure drop in the flowfield, suggesting the insert effectiveness is higher for the helix design, compared to a twisted plate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kun Zhang ◽  
Yu Zhang ◽  
Xiaoyu Wang ◽  
Liangbi Wang

Detailed numerical calculations are performed for investigating the effect of fin number and position on unsteady natural convection heat transfer in internally finned horizontal annulus. The SIMPLER algorithm with Quick scheme is applied for solving the Navier Stokes equations of flow and heat transfer. The results show that the heat transfer rate in annulus with fins increases with the increasing numbers of fin and Rayleigh numbers. For Ra = 2 × 105, the effect of numbers of fins and fins position at the bottom part on the unsteady solutions can be neglected, because the self-oscillation phenomenon is mainly affected by natural convection at the upper part of annulus. Although the fin positions cannot increase heat transfer rate significantly in the case of four fins, the self-oscillated solutions can be suppressed by altering fins position.


Sign in / Sign up

Export Citation Format

Share Document