Experimental and Theoretical Analysis of the Nanoscale Crater Generation With a Near Field Scanning Optical Tip

2008 ◽  
Author(s):  
Sy-Bor Wen

Different nano-patterns have been generated with the same near field scanning optical microscope (NSOM) tips with multiple femtosecond laser pulses in different background gases. It is demonstrated that significant energy was transferred from the NSOM probe to a pure silicon surface for the generation of nano-protrusions and nano-craters, which shows the possibility of nano-fabrication with the present experimental configuration. In order to understand the heating effect of the target and the relationship between the generations of nano-craters, a corresponding theoretical analysis considering the wave format light propagation within a single tapering NSOM probe (first order approximation) and the subsequent light absorption in a target is established. This analysis show that electron temperature of around the nano-scale laser spot of target can be very high (>∼10,000 K) during the laser pulse. However, both the photoexcited electron number density and lattice temperature are much less the threshold for a thermal and non-thermal evaporation. Therefore, supplementary mechanisms in additional to pure pulsed light absorption are required for generation of nano-craters on a target if a single tapering angle NSOM probe is applied.

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 623-627 ◽  
Author(s):  
M. HARIDAS ◽  
L. N. TRIPATHI ◽  
J. K. BASU

Effect of shape and density on the energy transfer between metallic nanoparticles and semi conducting nanostructures was studied by observing the photoluminescence spectra using near field scanning optical microscope. The monolayers of gold nanoparticles, CdSe nanorods and composite with different number ratios were prepared using Langmuir Blodgett method. The spectra collected from the films with different number ratios of CdSe and gold shows a systematic variation of peak position and intensity as a function of number density of CdSe . The photoluminescence spectra collected from composite monolayer is blue shifted compared to the spectra from CdSe nanorods monolayer. Further we observed a blue shift in peak position and reduction emission intensity with respect to increase in the fraction of gold nanoparticles and surface density. We have provided explanation for the observed behavior in terms of strong exciton–plasmon interactions in the compact hybrid monolayers.


Nano Letters ◽  
2004 ◽  
Vol 4 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Christopher R. McNeill ◽  
Holger Frohne ◽  
John L. Holdsworth ◽  
John E. Furst ◽  
Bruce V. King ◽  
...  

2008 ◽  
Vol 108 (7) ◽  
pp. 671-676 ◽  
Author(s):  
Petr Klapetek ◽  
Jiří Buršík ◽  
Miroslav Valtr ◽  
Jan Martinek

Sign in / Sign up

Export Citation Format

Share Document