Heat Flux Estimation in Direct Chill Casting Using Experimental and Inverse Finite Element Method

2008 ◽  
Author(s):  
Ashok Kumar Nallathambi ◽  
Umair Alam ◽  
Eckehard Specht

In Direct Chill (DC) non-ferrous metal casting, water is used as a cooling medium to extract the heat from the solidified outer layer of the ingot which supports the inner molten metal. Insufficient or excessive water supply changes the heat flux which is favorable for the growth of micro-cracks. This work presents the combined experimental and numerical technique to estimate the heat flux in the DC nickel casting. Experimental techniques are explained for the measurement of temperature. A two-dimensional Inverse Heat Conduction Problem (IHCP) is solved through the non-iterative Finite Element Method (FEM) using the experimental temperature data. Wetting front which separates the film boiling and nucleate boiling zone, changes the order of the heat flux. Maximum heat flux position and its propagation velocity are plotted as a function of time. It is demonstrated that increase in water velocity decreases the maximum heat flux and delays the wetting front movement.

Author(s):  
Khalid H. M. Abdalrahman ◽  
Umair Alam ◽  
Eckehard Specht

Metal quenching is a commonly used heat treatment technique, e.g. Direct Chill aluminum casting, quenching of steel for obtaining desired micro-structures. Film boiling, transition boiling, nucleate boiling and forced convection are the mechanisms of heat transfer during quenching. When the coolant strikes the hot metal surface during quenching, the surface can be divided into two distinct zones which are dry and wet zones. Heat transfer in dry zone is dominated by film boiling and the wet zone is influenced by transition boiling, nucleate boiling and forced convection. Wetting front is the boundary zone which separates the dry and wet regions. Wetting front is a thin region of coolant in which the transition and nucleate boiling occurs. Within a wetting front, the heat flux leaving from the hot surface reaches it global maximum. The speed of the wetting front indicates the quench ability of the hot surface for the corresponding flow conditions and the coolant. Wetting front tracking is more important for the prediction of surface temperature during quenching. This research works presents the combined numerical and experimental aspects of the heat flux estimation during the quenching process. At any instant, the position of the wetting front is simply assumed as the location of maximum heat flux. This assumption implicitly treats the wetting front as a line instead of area. The location of wetting front and its velocity at every instant are determined by using the experimental temperature data and the inverse algorithm. Experimental setup and temperature measurement technique are explained in detail. The developed inverse algorithm predicts the quenched side temperature and heat flux from the measured side temperature. A two-dimensional Inverse Heat Conduction Problem (IHCP) is solved through the non iterative Finite Element Method (FEM). The considered quenching technique for the study, based on the method of coolant supplied which is array of water jets. One kind of coolant used in this study is tap water. Aluminum 2024, Inconel, and Nickel are the three different materials considered for the analysis. A rectangular plate made of Nickel with dimension 140 × 70 × 2 mm, using the same dimensions of the Inconel. As in the case of the use of Aluminum, the thickness is the only change to 3 mm, the plate quenched by array of water jets with velocities 0.9 m/s, 1.2 m/s, 1.5 m/s and 1.8 m/s. The measured temperature data are further processed through the inverse finite element technique for the estimation of heat flux leaving from the quenched surface. The position of maximum heat flux changes with time which indicates the movement of wetting front. In this work, four different coolant velocities are employed, and the change in coolant velocity strongly affects the heat flux and wetting front movement.


2014 ◽  
Vol 39 (10) ◽  
pp. 7229-7239 ◽  
Author(s):  
Sergio Luiz Moni Ribeiro Filho ◽  
Marcelo Oliveira Gomes ◽  
Carlos Henrique Lauro ◽  
Lincoln Cardoso Brandão

2015 ◽  
Vol 1090 ◽  
pp. 63-68
Author(s):  
Peng Zhao ◽  
Sabariman ◽  
Eckehard Specht ◽  
Xin Nan Song

In this research work, the influence of jet velocities and different kind of metals during the quenching process with the use of array of jets was tested. Three different jet velocities i.e. 0.9m/s, 1.2m/s, and 1.8m/s were applied for the quenching of copper K12. Experiments with different kind of metals are using AA6082, Nickel, and Copper K12 samples. The influence of jet velocities and material properties was characterized by figuring out the trend of propagation of Leidenfrost Point (LFP) and maximum Heat Flux (maxHF) point over time. In addition, Leidenfrost Temperature (LFT), maxHF values with the corresponding DNB temperature as well as the width of wetting front over position were also presented. The results show that the jet velocities and the material properties significantly influence the boiling characteristics in a metal quenching process with array of jets.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Sang Gun Lee ◽  
Jin Sub Kim ◽  
Dong Hwan Shin ◽  
Jungho Lee

The effect of staggered-array water impinging jets on boiling heat transfer was investigated by a simultaneous measurement between boiling visualization and heat transfer characteristics. The boiling phenomena of staggered-array impinging jets on hot steel plate were visualized by 4K UHD video camera. The surface temperature and heat flux on hot steel plate was determined by solving 2-D inverse heat conduction problem, which was measured by the flat-plate heat flux gauge. The experiment was made at jet Reynolds number of Re = 5,000 and the jet-to-jet distance of staggered-array jets of S/Dn = 10. Complex flow interaction of staggered-array impinging jets exhibited hexagonal flow pattern like as honey-comb. The calculated surface heat transfer profiles show a good agreement with the corresponding boiling visualization. The peak of heat flux accords with the location which nucleate boiling is occurred at. In early stage, the positions of maximum heat flux locate at the stagnation point of each jet as the relatively low surface temperature is shown at their positions. At the elapsed time of 10 s, the flat shape of heat flux profile is formed in the hexagonal area where the interacting flow uniformly cools down the wetted surface. After that, the wetted area continuously enlarges with time and the maximum heat flux is observed at its peripheral. These results point out that the flow interaction of staggered-array jets effectively cools down the closer area around jets and also show an expansion of nucleate boiling and suppression of film boiling during water jet cooling on hot steel plate. [This work was supported by the KETEP grant funded by the Ministry of Trade, Industry & Energy, Korea (Grant No. 20142010102910).]


2011 ◽  
Vol 64 (1-2) ◽  
pp. 13-19 ◽  
Author(s):  
Ashok Kumar Nallathambi ◽  
Mohit Tyagi ◽  
Eckehard Specht ◽  
Albrecht Bertram

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jinshah Basheer Sheeba ◽  
Ajith Krishnan Rohini

The collection of solar energy using asphalt pavements has got a wide importance in the present energy scenario. Asphalt pavements subjected to solar radiation can reach temperature up to 70°C because of their excellent heat absorbing property. Many working parameters, such as pipe diameter, pipe spacing, pipe depth, pipe arrangement, and flow rate, influence the performance of asphalt solar collector. Existing literature on thermal energy extraction from asphalt pavements is based on the small scale laboratory samples and numerical simulations. In order to design an efficient asphalt solar collector there should be a payoff between the thermal and structural stability of the pavement, so that maximum heat can be absorbed without structural damage due to external load condition. This paper presents a combined thermal and structural analysis of asphalt solar collector using finite element method. Analysis is carried out in different models so as to obtain optimum pipe spacing, pipe diameter, depth, and pipe arrangement under the specified condition.


Sign in / Sign up

Export Citation Format

Share Document