Forced Convection Film Boiling Heat Transfer From Single Horizontal Cylinders in Saturated and Subcooled Liquids: Part 2—Experimental Data for Subcooled Liquids and Its Correlation

Author(s):  
Qiusheng Liu ◽  
Masahiro Shiotsu ◽  
Akira Sakurai ◽  
Katsuya Fukuda

Forced convection film boiling heat transfer from a horizontal cylinder in water and Freon-113 flowing upward perpendicular to the cylinder under subcooled conditions was measured for the flow velocities from 0 to 1 m/s at the system pressures ranging from 100 to 500 kPa: the platinum horizontal cylinders with diameters ranging from 0.7 to 5 mm were used as the test heaters. The film boiling heat transfer coefficients were obtained for the surface superheats from about 800 K for water and from about 400 K for Freon-113 down to minimum film boiling surface superheats. These heat transfer coefficients increase with the increase in flow velocity, liquid subcooling, system pressure, and with the decrease in cylinder diameter. A correlation for subcooled forced convection film boiling heat transfer was presented, which can describe the experimental data obtained within ±20% for the flow velocities below 0.7 m/s, and within −30% to +20% for the higher flow velocities. The correlation also predicted well the data by Shigechi (1983), Motte and Bromley (1957), and Sankaran and Witte (1990) obtained for the larger diameter cylinders and higher flow velocities in various liquids at the pressures of near atmospheric. The Shigechi’s data were in the range from about −20% to +15%, the data of Motte and Bromley were about ±30%, and the data of Sankaran and Witte were within +20% of the curves given by the corresponding predicted values.

Author(s):  
Qiusheng Liu ◽  
Katsuya Fukuda

Forced convection film boiling heat transfer on a horizontal cylinder in saturated water and Freon-113 flowing upward perpendicular to the cylinder was measured for the flow velocities ranging from zero to 1 m/s at the system pressures ranging from 100 to 500 kPa: the platinum cylinders with the diameters ranging from 0.7 to 5 mm were used as the test cylinder heaters. The existing correlation for forced convection film boiling heat transfer given by Bromley et al. could not well describe the experimental data obtained, especially those for the higher pressures. The forced convection film boiling heat transfer correlation including the radiation contribution from the cylinders with various diameters for saturation conditions was developed based on forced convection two-phase laminar boundary layer film boiling model and the experimental data obtained. The experimental data agreed with the corresponding values derived from the correlation within ±15% for the flow velocities below 0.7 m/s, and within −30% to +15% for higher flow velocities. It was confirmed that the experimental data obtained by Bromley et al. for the horizontal carbon cylinders with the diameters ranging from 9.83 to 16.2 mm and with the significant radiation effect from the cylinder surfaces in various liquids for the various flow velocities up to 4.4 m/s at an atmospheric pressure agreed with the corresponding values derived from the new correlation within ±20%.


1990 ◽  
Vol 112 (2) ◽  
pp. 441-450 ◽  
Author(s):  
A. Sakurai ◽  
M. Shiotsu ◽  
K. Hata

Experimental data of pool film boiling heat transfer from horizontal cylinders in various liquids such as water, ethanol, isopropanol, Freon-113, Freon-11, liquid nitrogen, and liquid argon for wide ranges of system pressure, liquid subcooling, surface superheat and cylinder diameter are reported. These experimental data are compared with a rigorous numerical solution and an approximate analytical solution derived from a theoretical model based on laminar boundary layer theory for pool film boiling heat transfer from horizontal cylinders including the effects of liquid subcooling and radiation from the cylinder. A new correlation was developed by slightly modifying the approximate analytical solution to agree better with the experimental data. The values calculated from the correlation agree with the authors’ data within ± 10 percent, and also with other researchers’ data for various liquids including those with large radiation effects, though these other data were obtained mainly under saturated conditions at atmospheric pressure.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Chan Soo Kim ◽  
Kune Y. Suh

The effect of inclination angle of the downward facing flat plate on the interfacial wavy motion is investigated utilizing the water quenching test apparatus downward ebullient laminar transition apparatus flat surface (DELTA-FS) in a quasi-steady state. Film boiling heat transfer coefficients are obtained on the relatively long surface in the flow direction. Interfacial velocities at the various inclination angles and wall superheat conditions are determined through the analysis of the visualized continuous snapshots with 1000 fps. Visualization of the vapor film reveals that the interfacial wavelength increases and the interfacial velocity decreases as the flat plate moves from the vertical to downward facing locations. A new semi-empirical correlation is developed from the measured heat transfer coefficients and interfacial velocities. The correlation shows good agreement with the previous water test results on vertical plates. In the case of the previous other fluid experimental results on the vertical plates, the correlation overpredicts the film boiling heat transfer coefficients at the experimental condition.


1966 ◽  
Vol 88 (1) ◽  
pp. 17-23 ◽  
Author(s):  
C. A. Heath ◽  
C. P. Costello

Ethanol, pentane, and Freon-113 were tested for atmospheric pressure, saturated film-boiling characteristics. Turbulent waves arise close to the bottom of vertical platinum plates and the data become identical to those obtained with horizontal plates, verifying an earlier contention by Y. P. Chang. The equation of Berenson fits the data for both horizontal and vertical heaters fairly well if modified for geometry, and the equation also correctly predicts the effect of acceleration on film-boiling heat-transfer coefficients. At high temperature differences, Berenson’s equation for the heat-transfer coefficient is slightly conservative, which is qualitatively predictable by analyzing the departures of the actual system from the idealized model of Berenson.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
J. A. Hernández-Magallanes ◽  
W. Rivera

This paper reports the experimental data of boiling heat transfer coefficients for the ammonia–lithium nitrate mixture in a laminar falling film. The analyzed heat exchanger consists of a shell with an internal helical coil. More than one hundred test runs were carried out in steady-state conditions to determine the boiling heat transfer coefficients at generation temperatures, concentrations, and mass flow rates typical of absorption cooling systems of capacities between 5 and 10 kW. Ammonia vapor was produced at generation temperatures between 80 °C and 105 °C obtaining boiling heat transfer coefficients between 85 and 340 W/m2K. Semi-empirical correlations were used by diverse authors to correlate the experimental data. A new correlation was proposed with which the best adjustments were obtained. Also, the influence of the heat flux, the refrigerant solution mass flow rates, and the exit vapor qualities were analyzed in the boiling heat transfer coefficients.


Author(s):  
Chan S. Kim ◽  
Kune Y. Suh ◽  
Joy L. Rempe ◽  
Fan-Bill Cheung ◽  
Sang B. Kim

Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.


1964 ◽  
Vol 86 (1) ◽  
pp. 81-87 ◽  
Author(s):  
E. E. Polomik ◽  
S. Levy ◽  
S. G. Sawochka

Film boiling heat-transfer coefficients, beyond “burnout,” of 800–2000 Btu/hr ft2 deg F, were measured with steam-water mixtures in annular flow at pressures of 800, 1100, and 1400 psi with healer temperatures not exceeding 1000 deg F. Variation of co-efficients with pressure, mass velocity, and steam quality are presented together with a correlation in the range of parameters studied.


Sign in / Sign up

Export Citation Format

Share Document