Advanced Transient Plane Source Method for the Measurement of Thermal Properties of High Pressure Metal Hydrides

Author(s):  
Scott Flueckiger ◽  
Tyler Voskuilen ◽  
Yuan Zheng ◽  
Timothe´e Pourpoint

Metal hydrides are a promising material type for hydrogen storage in automotive applications, but thermal property data is needed to optimize the necessary heat exchangers. In the present work, the transient plane source method is integrated with a pressure vessel to measure these properties for metal hydride powder as a function of pressure during the hydrogenation process. The properties under investigation include effective thermal conductivity, thermal diffusivity, specific heat, and thermal contact resistance. The results of this work with oxidized Ti1.1CrMn powder provide effective thermal conductivity values similar to data reported in literature for other metal hydride materials. The experimental measurements are also well modeled by the Zehner-Bauer-Schlu˝nder interpretive model for packed beds as a function of gas pressure. Extending the test method and ZBS model to estimate the contact resistance provides values that were two orders of magnitude less than measurements previously reported for other hydride materials.

2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012030
Author(s):  
A N Karim ◽  
B Adl-Zarrabi ◽  
P Johansson ◽  
A Sasic Kalagasidis

Abstract Aerogel-based plasters are composite materials with declared thermal conductivities in the range of traditional insulating materials, i.e. 30-50 mW/(m·K). Based on the results from reported field measurements, aerogel-based plasters can significantly reduce the thermal transmittance of uninsulated walls. However, the in-situ measured thermal conductivities have sometimes been higher than the declared values measured in laboratory and in the main direction of the heat flow. Meanwhile, the anisotropic thermal performance of aerogel-based plasters, i.e., deviating thermal performance in the different directions of heat flow, has not been explored yet. The objective of this study is thus to evaluate the anisotropic thermal conductivity of an aerogel-based plaster. This is done in a set of laboratory measurements using the transient plane source method. Six identical and cubic samples with the dimensions of 10×10×10 cm3 were paired two and two, creating three identical sample sets. In total, 360 measurements of thermal conductivity and thermal diffusivity, and 130 measurements for specific heat capacity were conducted. The results indicate a weak anisotropy of less than ±6.5 % between the three directions (x, y, z). Considering the accuracy of the selected measurement technique, better than ±5 %, supplementary measurements using another technique are recommended.


Sign in / Sign up

Export Citation Format

Share Document