Experimental and Numerical Study on the Cold Start Performance of a Single PEM Fuel Cell

Author(s):  
Calvin H. Li ◽  
John Beatty ◽  
Sam Durbin ◽  
Paul Hodgins ◽  
Peter Kwasniak

A combined experimental and analytical investigation of single proton exchange membrane (PEM) fuel cells, during cold start has been conducted. The temperature influence on the performance of a single PEM fuel cell and the cold start failure of the PEM fuel cell was evaluated experimentally to determine the failure mechanisms and performance. The voltage, current and power characteristics were investigated as a function of the load, the hydrogen fuel flow rate, and the cell temperature. The characteristics of cold start for a single PEM fuel cell were analyzed, and the various failure mechanisms explored and characterized. In an effort to better understand the operational behavior and failure modes, a numerical simulation was also developed. The results of this analysis were then compared with the previously obtained experimental results and confirmed the accuracy of the failure mechanisms identified.

Author(s):  
Scott Lux ◽  
Arif Nelson ◽  
Nicholas Josefik ◽  
Franklin Holcomb

The U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) managed the Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration. The U.S. Congress funded this project for fiscal years 2001–2004. A fleet of 91 residential-scale PEM fuel cells, ranging in size from 1–5 kW, was demonstrated at various U.S. Department of Defense (DoD) facilities worldwide. This detailed analysis looks into the most prevalent means of failure in the PEM fuel cell systems as categorized from the stack, reformer, and power-conditioning systems as well as the subsequent subsystems. Also evaluated are the lifespan and failure modes of selected fuel cell components, based on component type, age, and usage. The analysis shows while the fuel cell stack components had the single highest number of outages, the balance of plant made for 60.6% of the total outages. The hydrogen cartridges were the most prevalent component replaced during the entire program. The natural gas fuel cell stacks had the highest average operational lifetime; one stack reached a total of 10,250 hours.


2019 ◽  
Vol 5 (1) ◽  
pp. 271-282 ◽  
Author(s):  
Bin Du ◽  
Richard Pollard ◽  
Manikand Ramani ◽  
Paul Graney ◽  
John F. Elter

2011 ◽  
Vol 110-116 ◽  
pp. 2301-2307
Author(s):  
P. Buaphad ◽  
P. Thamboon ◽  
C. Tengsirivattana ◽  
J. Saisut ◽  
K. Kusoljariyakul ◽  
...  

This work reports an application of reflective terahertz (THz) imaging for identification of water distribution in the proton exchange membrane (PEM) fuel cell. The THz radiation generated from relativistic femtosecond electron bunches is employed as a high intensity source. The PEM fuel cell is designed specifically for the measurement allowing THz radiation to access the flow field region. The THz image is constructed from reflected radiation revealing absorptive area of water presence. The technique is proved to be a promising tool for studying water management in the PEM fuel cell. Detailed experimental setup and results will be described.


2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


Author(s):  
Attila Husar ◽  
Andrew Higier ◽  
Hongtan Liu

Water management is of critical importance in a proton exchange membrane (PEM) fuel cell. Yet there are very limited studies of water transfer through the membrane and no data are available for water transfer due to individual mechanisms through the membrane electrode assembly (MEA) in an operational fuel cell. Thus it is the objective of this study to measure water transfer through the MEA due to different mechanisms through the membrane electrode assembly (MEA) of an operational PEM fuel cell. The three different mechanisms of water transfer, i.e., electro-osmotic drag, diffusion and hydraulic permeation were isolated by specially imposed boundary conditions. Therefore water transfer through the MEA due to each mechanism could be measured separately. In this study, all the data were collected in an actual assembled operational fuel cell, and some of the data were collected while the fuel cell was generating power. The measured results showed that water transfer due to hydraulic permeation, i.e. the pressure difference between the anode and cathode is at least an order of magnitude lower than those due to other two mechanisms. The data for water transfers due to electro-osmosis and diffusion through the MEA are in good agreement with some of the data and model predications in the literature for the membrane. The methodology used in this study is simple and can be easily adopted for in-situ water transfer measurement due to different mechanisms in actual PEM fuel cells without any cell modifications.


2002 ◽  
Vol 756 ◽  
Author(s):  
Leszek Gladczuk ◽  
Chirag Joshi ◽  
Anamika Patel ◽  
Jim Guiheen ◽  
Zafar Iqbal ◽  
...  

ABSTRACTTantalum is a tough, corrosion resistant metal, which would be suitable for use as bipolar plates for proton exchange membrane (PEM) fuel cells, if it was not for its high weight and price. Relatively thin tantalum coatings, however, can be deposited on other inexpensive and lighter weight metals, such as aluminum and steel, providing a passive protection layer on these easily formed substrates. We have successfully deposited, high quality α (body-centered-cubic, bcc) and β (tetragonal) phase tantalum coatings that were a few micrometers thick by dc magnetron sputtering on steel and aluminum. The growth of the thermodynamically preferred body-centered-cubic (bcc) tantalum phase was induced by a choice of deposition conditions and substrate surface treatment. The microstructure and corrosion resistance of the α-phase in an environment approximately simulating the electrochemical conditions used in a PEM fuel cell were investigated under potentiodynamic conditions. Preliminary potentiostatic measurements of a β-phase sample are also presented.


Author(s):  
Kristopher Inman ◽  
Xia Wang ◽  
Brian Sangerozan

Thermal and water management in Proton Exchange Membrane (PEM) fuel cells provide a significant challenge for engineers and fuel cell designers as both have a direct effect on performance and durability. Internal temperature is very difficult to measure due to component geometry and the internal environment possessed by PEM fuel cells along with a lack of sufficient temperature measurement methods which are often highly invasive. This research presents initial developments for creating a non-intrusive temperature measurement system, based on the principles of phosphor thermometry, which also has the ability to optically detect liquid water formation and movement in PEMFC gas channels. The sensor was designed, calibrated and then installed in a 25 cm2 PEM fuel cell for in-situ testing. The experimental data show that a relationship exists between temperature variation and water droplet movement in gas channels of a PEM fuel cell.


Author(s):  
M. I. Rosli ◽  
D. J. Borman ◽  
D. B. Ingham ◽  
M. S. Ismail ◽  
L. Ma ◽  
...  

This paper reviews some of the previous research works on direct visualization of water behavior inside proton exchange membrane (PEM) fuel cells using a transparent single cell. Several papers which have employed the method have been selected and summarized, and a comparison between the design of the cell, materials, methods, and visual results are presented. The important aspects, advantages of the method, and a summary on the previous investigations are discussed. Some initial works on transparent PEM fuel cell design using a single serpentine flow-field pattern are described. The results show that the direct visualization via transparent PEM fuel cells could be one potential technique for investigating the water behavior inside the channels and a very promising way forward to provide useful data for validation in PEM fuel cell modeling and simulation.


2013 ◽  
Vol 24 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Viorel Ionescu

AbstractA fuel cell is a device that can directly transfer chemical energy to electric and thermal energy. Proton exchange membrane fuel cells (PEMFC) are highly efficient power generators, achieving up to 50-60% conversion efficiency, even at sizes of a few kilowatts. There are several compelling technological and commercial reasons for operating H2/air PEM fuel cells at temperatures above 100 °C; rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. All of the High Temperature PEMFC model equations are solved with finite element method using commercial software package COMSOL Multiphysics. The results from PEM fuel cell modeling were presented in terms of reactant (oxygen and hydrogen) concentrations and water concentration in the anode and cathode gases; the polarization curve of the cell was also displayed.


2013 ◽  
Vol 724-725 ◽  
pp. 723-728
Author(s):  
Xue Nan Zhao ◽  
Hong Sun ◽  
Zhi Jie Li

High temperature proton exchange membrane (HT-PEM) fuel cell is considered as one of the most probable fuel cells to be large-scale applied due to characteristics of high efficiency, friendly to environment, low fuel requirement, ease water and heat management, and so on. However, carbon monoxide (CO) content in fuel plays an important role in the performance of HT-PEM fuel cells. Volt-ampere characteristics and AC impedance of HT-PEM fuel cell are tested experimentally in this paper, and effects of CO in fuel on its performance are analyzed. The experimental results show that CO in fuel increases remarkably the Faraday resistance of HT-PEM fuel cell and decreases the electrochemical reaction at anode; the more CO content in fuel is, the less HT-PEM fuel cell performance is; with the increasing cell temperature, the electrochemical reaction on the surface of catalyst at anode is improved and the poisonous effects on the HT-PEM fuel cell are alleviated.


Sign in / Sign up

Export Citation Format

Share Document