Effects of CO on Performance of HT-PEM Fuel Cells

2013 ◽  
Vol 724-725 ◽  
pp. 723-728
Author(s):  
Xue Nan Zhao ◽  
Hong Sun ◽  
Zhi Jie Li

High temperature proton exchange membrane (HT-PEM) fuel cell is considered as one of the most probable fuel cells to be large-scale applied due to characteristics of high efficiency, friendly to environment, low fuel requirement, ease water and heat management, and so on. However, carbon monoxide (CO) content in fuel plays an important role in the performance of HT-PEM fuel cells. Volt-ampere characteristics and AC impedance of HT-PEM fuel cell are tested experimentally in this paper, and effects of CO in fuel on its performance are analyzed. The experimental results show that CO in fuel increases remarkably the Faraday resistance of HT-PEM fuel cell and decreases the electrochemical reaction at anode; the more CO content in fuel is, the less HT-PEM fuel cell performance is; with the increasing cell temperature, the electrochemical reaction on the surface of catalyst at anode is improved and the poisonous effects on the HT-PEM fuel cell are alleviated.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 144
Author(s):  
Abed Alaswad ◽  
Abdelnasir Omran ◽  
Jose Ricardo Sodre ◽  
Tabbi Wilberforce ◽  
Gianmichelle Pignatelli ◽  
...  

This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up, high efficiency, no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells, the high cost of the technology remains a key factor impeding its widespread commercialization. Therefore, this review presents detailed information into the best operating conditions that yield maximum fuel cell performance. The paper recommends future research geared towards robust fuel cell geometry designs, as this determines the cell losses, and material characterization of the various cell components. When this is done properly, it will support a total reduction in the cost of the cell which in effect will reduce the total cost of the system. Despite the strides made by the fuel cell research community, there is a need for public sensitization as some people have reservations regarding the safety of the technology. This hurdle can be overcome if there is a well-documented risk assessment, which also needs to be considered in future research activities.


2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


Author(s):  
Kristopher Inman ◽  
Xia Wang ◽  
Brian Sangerozan

Thermal and water management in Proton Exchange Membrane (PEM) fuel cells provide a significant challenge for engineers and fuel cell designers as both have a direct effect on performance and durability. Internal temperature is very difficult to measure due to component geometry and the internal environment possessed by PEM fuel cells along with a lack of sufficient temperature measurement methods which are often highly invasive. This research presents initial developments for creating a non-intrusive temperature measurement system, based on the principles of phosphor thermometry, which also has the ability to optically detect liquid water formation and movement in PEMFC gas channels. The sensor was designed, calibrated and then installed in a 25 cm2 PEM fuel cell for in-situ testing. The experimental data show that a relationship exists between temperature variation and water droplet movement in gas channels of a PEM fuel cell.


Author(s):  
M. I. Rosli ◽  
D. J. Borman ◽  
D. B. Ingham ◽  
M. S. Ismail ◽  
L. Ma ◽  
...  

This paper reviews some of the previous research works on direct visualization of water behavior inside proton exchange membrane (PEM) fuel cells using a transparent single cell. Several papers which have employed the method have been selected and summarized, and a comparison between the design of the cell, materials, methods, and visual results are presented. The important aspects, advantages of the method, and a summary on the previous investigations are discussed. Some initial works on transparent PEM fuel cell design using a single serpentine flow-field pattern are described. The results show that the direct visualization via transparent PEM fuel cells could be one potential technique for investigating the water behavior inside the channels and a very promising way forward to provide useful data for validation in PEM fuel cell modeling and simulation.


2013 ◽  
Vol 24 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Viorel Ionescu

AbstractA fuel cell is a device that can directly transfer chemical energy to electric and thermal energy. Proton exchange membrane fuel cells (PEMFC) are highly efficient power generators, achieving up to 50-60% conversion efficiency, even at sizes of a few kilowatts. There are several compelling technological and commercial reasons for operating H2/air PEM fuel cells at temperatures above 100 °C; rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. All of the High Temperature PEMFC model equations are solved with finite element method using commercial software package COMSOL Multiphysics. The results from PEM fuel cell modeling were presented in terms of reactant (oxygen and hydrogen) concentrations and water concentration in the anode and cathode gases; the polarization curve of the cell was also displayed.


2021 ◽  
Vol 11 (5) ◽  
pp. 2052
Author(s):  
Amlak Abaza ◽  
Ragab A. El-Sehiemy ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

In recent years, the penetration of fuel cells in distribution systems is significantly increased worldwide. The fuel cell is considered an electrochemical energy conversion component. It has the ability to convert chemical to electrical energies as well as heat. The proton exchange membrane (PEM) fuel cell uses hydrogen and oxygen as fuel. It is a low-temperature type that uses a noble metal catalyst, such as platinum, at reaction sites. The optimal modeling of PEM fuel cells improves the cell performance in different applications of the smart microgrid. Extracting the optimal parameters of the model can be achieved using an efficient optimization technique. In this line, this paper proposes a novel swarm-based algorithm called coyote optimization algorithm (COA) for finding the optimal parameter of PEM fuel cell as well as PEM stack. The sum of square deviation between measured voltages and the optimal estimated voltages obtained from the COA algorithm is minimized. Two practical PEM fuel cells including 250 W stack and Ned Stack PS6 are modeled to validate the capability of the proposed algorithm under different operating conditions. The effectiveness of the proposed COA is demonstrated through the comparison with four optimizers considering the same conditions. The final estimated results and statistical analysis show a significant accuracy of the proposed method. These results emphasize the ability of COA to estimate the parameters of the PEM fuel cell model more precisely.


Author(s):  
A. Albarbar ◽  
M. Alrweq

To optimise the electrical performance of proton exchange membrane (PEM) fuel cells, a number of factors have to be precisely monitored and controlled. Water content is one of those factors that has great impact on reliability, durability and performance of PEM fuel cells. The difficulty in controlling water content lies in the inability to determine correct level of water accumulated inside the fuel cell. In this paper, a model-based technique, implemented in COMSOL, is presented for monitoring water content in PEM fuel cells. The model predicts, in real time, water content taking account of other processes occurring in gas channels, across gas diffusion layers (GDL), electrodes, and catalyst layer (CL) and within the membrane to minimize voltage losses and performance degradation. The level of water generated is calculated as function of cell’s voltage and current. Model’s performance and accuracy are verified using a transparent 500 mW PEM fuel cell. Results show model predicted current and voltage curves are in good agreement with the experimental measurements. The unique feature of this model is that, no special requirements are needed as only current, and voltage of the PEM fuel cell were measured thus, is expected to pave the path for developing non-intrusive control and monitoring systems for fuel cells.


2016 ◽  
Vol 839 ◽  
pp. 165-169 ◽  
Author(s):  
Thomas Luschtinetz ◽  
Andreas Sklarow ◽  
Johannes Gulden

Liquid organic hydrogen carriers (LOHC) are a promising form to store hydrogen. However, the process of dehydrogenation has to be demonstrated for applications with proton exchange membrane (PEM) fuel cells which require very pure hydrogen. Here we document the measured degradation effects due to CO contamination on a PEM fuel cell that is supplied with hydrogen from a LOHC and we want to use later in a maritime application.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Chao Si ◽  
Xiao-Dong Wang ◽  
Wei-Mon Yan ◽  
Tian-Hu Wang

Water transport and the corresponding water management strategy in proton exchange membrane (PEM) fuel cells are quite critical for the improvement of the cell performance. Accuracy modeling of water transport in porous electrodes strongly depends on the appropriate constitutive relationship for capillary pressure which is referred to aspc-scorrelation, wherepcis the capillary pressure andsis the fraction of saturation in the pores. In the present PEM fuel cell two-phase models, the Leverett-Udellpc-scorrelation is widely utilized which is proposed based on fitting the experimental data for packed sands. However, the size and structure of pores for the commercial porous electrodes used in PEM fuel cells differ from those for the packed sands significantly. As a result, the Leverett-Udell correlation should be improper to characterize the two-phase transport in the porous electrodes. In the recent decade, many efforts were devoted to measuring the capillary pressure data and developing newpc-scorrelations. The objective of this review is to review the most significant developments in recent years concerning the capillary pressure measurements and the developedpc-scorrelations. It is expected that this review will be beneficial to develop the improved PEM fuel cell two-phase model.


Author(s):  
Cullen R. Buie ◽  
Jonathan D. Posner ◽  
Tibor Fabian ◽  
Suk-Won Cha ◽  
Fritz B. Prinz ◽  
...  

We have developed proton exchange membrane fuel cells (PEMFC’s) with integrated planar electroosmotic pumping structures that actively remove liquid water from cathode flow channels. Recent experimental and numerical investigations on PEMFC’s emphasize water management as a critical factor in the design of robust, high efficiency fuel cells. Although various passive water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly larger than those required by fuel cell stoichiometry. This method of water removal is thermodynamically unfavorable and constrains cathode flow channel design. EO pumps can relieve cathode design barriers and simplify water management in fuel cells. EO pumps have no moving parts, scale across a wide range of operation, and result in low parasitic power. We demonstrate and quantify the efficacy of EO water pumping using a single-pass fuel cell test channel. Our results show that removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. These pumps enable operation with air flow rates of just two to three times stoichiometric requirements.


Sign in / Sign up

Export Citation Format

Share Document