High-Throughput Screening of Aperiodic Superlattice for Minimum Thermal Conductivity Based on Atomistic Simulation-Informed Effective Medium Theory and Genetic Algorithm

Author(s):  
Shangchao Lin ◽  
Yixuan Liu ◽  
Zhuangli Cai

Abstract Superlattices with suppressed thermal conductivity are of great significance in the field of thermoelectricity and can improve the thermoelectric conversion efficiency of materials. Due to Anderson localization of coherent phonons, aperiodic superlattices have lower thermal conductivity than their periodic counterparts. At present, the thermal conductivity of superlattices is mostly predicted through ab initio or molecular dynamics simulations, which is computationally expensive and limits the size of the system. Meanwhile, there are many layered structural combinations for aperiodic superlattices, making it difficult to efficiently screen through all the combinations to search structures with the minimum thermal conductivity. In this work, based on a modified series thermal resistance model (STRM), a new effective medium theory (EMT) is established to predict the thermal conductivity of periodic and aperiodic superlattices. An adjacency factor near the maximum-resistance layers and a correction function, respectively, are introduced to account for the phonon coherence effect and the degree of randomization in the layer thickness. Combined with the genetic algorithm, EMT enables high-throughput screening of millions of aperiodic superlattice structures. This work demonstrates that the thermal conductivities of aperiodic superlattices at a wide range of system size can be constantly reduced to 1.4∼1.8 W/(m·K), which occurs at averaged periodic thicknesses in a stable range of 2.0∼2.5 nm.

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1291
Author(s):  
Fatema Tarannum ◽  
Rajmohan Muthaiah ◽  
Roshan Sameer Annam ◽  
Tingting Gu ◽  
Jivtesh Garg

Thermal conductivity (k) of polymers is usually limited to low values of ~0.5 Wm−1K−1 in comparison to metals (>20 Wm−1K−1). The goal of this work is to enhance thermal conductivity (k) of polyethylene–graphene nanocomposites through simultaneous alignment of polyethylene (PE) lamellae and graphene nanoplatelets (GnP). Alignment is achieved through the application of strain. Measured values are compared with predictions from effective medium theory. A twin conical screw micro compounder is used to prepare polyethylene–graphene nanoplatelet (PE-GnP) composites. Enhancement in k value is studied for two different compositions with GnP content of 9 wt% and 13 wt% and for applied strains ranging from 0% to 300%. Aligned PE-GnP composites with 13 wt% GnP displays ~1000% enhancement in k at an applied strain of 300%, relative to k of pristine unstrained polymer. Laser Scanning Confocal Microscopy (LSCM) is used to quantitatively characterize the alignment of GnP flakes in strained composites; this measured orientation is used as an input for effective medium predictions. These results have important implications for thermal management applications.


Author(s):  
Xiangyu Li ◽  
Wonjun Park ◽  
Yong P. Chen ◽  
Xiulin Ruan

Metal nanoparticle has been a promising option for fillers in thermal interface materials due to its low cost and ease of fabrication. However, nanoparticle aggregation effect is not well understood because of its complexity. Theoretical models, like effective medium approximation model, barely cover aggregation effect. In this work, we have fabricated nickel-epoxy nanocomposites and observed higher thermal conductivity than effective medium theory predicts. Smaller particles are also found to show higher thermal conductivity, contrary to classical models indicate. A two-level EMA model is developed to account for aggregation effect and to explain the size-dependent enhancement of thermal conductivity by introducing local concentration in aggregation structures.


2005 ◽  
Vol 127 (6) ◽  
pp. 553-559 ◽  
Author(s):  
Deepak Ganapathy ◽  
Kulwinder Singh ◽  
Patrick E. Phelan ◽  
Ravi Prasher

This paper introduces a novel method, combining effective medium theory and the finite differences method, to model the effective thermal conductivity of cylindrical-particle-laden composite materials. Typically the curvature effects of cylindrical or spherical particles are ignored while calculating the thermal conductivity of composites containing such particles through numerical techniques, such that the particles are modeled as cuboids or cubes. An alternative approach to mesh the particles into small volumes is just about impossible, as it leads to highly intensive computations to get accurate results. On the other hand, effective medium theory takes the effect of curvature into account, but cannot be used at high volume fractions because it does not take into account the effects of percolation. In this paper, a novel model is proposed where the cylindrical particles are still treated as squares (cuboids), but to capture the effect of curvature, an effective conductivity is assigned to the particles by using the effective medium approach. The authors call this the effective unit cell approach. Results from this model for different volume fractions, on average, have been found to lie within ±5% of experimental thermal conductivity data.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Patricia A. Berge ◽  
Brian P. Bonner ◽  
James G. Berryman

Using fused glass beads, we have constructed a suite of clean sandstone analogs, with porosities ranging from about 1 to 43 percent, to test the applicability of various composite medium theories that model elastic properties. We measured P‐ and S‐wave velocities in dry and saturated cases for our synthetic sandstones and compared the observations to theoretical predictions of the Hashin‐Shtrikman bounds, a differential effective medium approach, and a self‐consistent theory known as the coherent potential approximation. The self‐consistent theory fits the observed velocities in these sandstone analogs because it allows both grains and pores to remain connected over a wide range of porosities. This behavior occurs because this theory treats grains and pores symmetrically without requiring a single background (host) material, and it also allows the composite medium to become disconnected at a finite porosity. In contrast, the differential effective medium theory and the Hashin‐Shtrikman upper bound overestimate the observed velocities of the sandstone analogs because these theories assume the microgeometry is represented by isolated pores embedded in a host material that remains continuous even for high porosities. We also demonstrate that the differential effective medium theory and the Hashin‐Shtrikman upper bound correctly estimate bulk moduli of porous glass foams, again because the microstructure of the samples is consistent with the implicit assumptions of these two theoretical approaches.


Sign in / Sign up

Export Citation Format

Share Document