Transient Thermo-Mechanical Stress Analysis of Hot Surface Probe Using Sequentially Coupled CFD-FEA Approach

2021 ◽  
Author(s):  
Sang-Guk Kang ◽  
Je Ir Ryu ◽  
Austen H. Motily ◽  
Prapassorn Numkiatsakul ◽  
Tonghun Lee ◽  
...  

Abstract Energy addition using a hot surface probe is required for reliable ignition of aircraft compression ignition engines running on fuel variations and at altitude conditions. Thus, durability of the hot surface probe is crucial for application in these engines. Thermo-mechanical stress is one of the key parameters that determine durability, which requires an accurate prediction of the transient temperature field based on well-defined boundary conditions representing the dynamic and complex fluid flow inside engines. To meet this requirement, the present study focuses on transient thermo-mechanical stress analysis using a sequentially coupled CFD-FEA approach to understand transient thermo-mechanical responses of the hot surface probe. A 3D transient reacting flow simulation was conducted first using CONVERGE software, the results of which were exported to map thermal and pressure boundary conditions onto a structural finite element mesh. Transient thermo-mechanical stress analysis was performed sequentially using ABAQUS software utilizing the mapped boundary conditions. The results such as transient temperature history, resultant thermo-mechanical stress, displacement, potential failure modes, etc. were critically reviewed, which can provide helpful information for further design improvement.

2006 ◽  
Vol 128 (4) ◽  
pp. 736-744 ◽  
Author(s):  
Harald Schoenenborn ◽  
Ernst Ebert ◽  
Burkhard Simon ◽  
Paul Storm

Within the framework programs of the EU for Efficient and Environmentally Friendly Aero-Engines (EEFEA) MTU has developed a highly efficient cross-counter flow heat exchanger for the application in intercooled recuperated aeroengines. This very compact recuperator is based on the profile tube matrix arrangement invented by MTU and one of its outstanding features is the high resistance to thermal gradients. In this paper the combined thermomechanical design of the recuperator is presented. State-of-the-art calculation procedures for heat transfer and stress analysis are combined in order to perform a reliable life prediction of the recuperator. The thermal analysis is based upon a 3D parametric finite element model generation. A program has been generated, which allows the automatic generation of both the material mesh and the boundary conditions. Assumptions concerning the boundary conditions are presented as well as steady state and transient temperature results. The stress analysis is performed with a FEM code using essentially the same computational grid as the thermal analysis. With the static temperature fields the static loading of the profile tubes is determined. From transient thermal calculations successive 3D temperature fields are obtained which enable the determination of creep life and LCF life of the part. Finally, vibration analysis is performed in order to estimate the vibration stress of the profile tubes during engine operation. Together with the static stress a Goodman diagram can be constructed. The combined analysis shows the high life potential of the recuperator, which is important for economic operation of a recuperative aero-engine.


Author(s):  
Harald Scho¨nenborn ◽  
Ernst Ebert ◽  
Burkhard Simon ◽  
Paul Storm

Within the framework programs of the EU for Efficient and Environmentally Friendly Aero-Engines (EEFEA) MTU has developed a highly efficient cross-counter flow heat exchanger for the application in intercooled recuperated aero-engines. This very compact recuperator is based on the profile tube matrix arrangement invented by MTU and one of its outstanding features is the high resistance to thermal gradients. In this paper the combined thermomechanical design of the recuperator is presented. State-of-the-art calculation procedures for heat transfer and stress analysis are combined in order to perform a reliable life prediction of the recuperator. The thermal analysis is based upon a 3D parametric finite element model generation. A program has been generated, which allows the automatic generation of both the material mesh and the boundary conditions. Assumptions concerning the boundary conditions are presented as well as steady state and transient temperature results. The stress analysis is performed with a FEM code using essentially the same computational grid as the thermal analysis. With the static temperature fields the static loading of the profile tubes is determined. From transient thermal calculations successive 3D temperature fields are obtained which enable the determination of creep life and LCF life of the part. Finally, vibration analysis is performed in order to estimate the vibration stress of the profile tubes during engine operation. Together with the static stress a Goodman diagram can be constructed. The combined analysis shows the high life potential of the recuperator, which is important for economic operation of a recuperative aero-engine.


2004 ◽  
Vol 126 (3) ◽  
pp. 619-626 ◽  
Author(s):  
Hakan Ertu¨rk ◽  
Ofodike A. Ezekoye ◽  
John R. Howell

The boundary condition design of a three-dimensional furnace that heats an object moving along a conveyor belt of an assembly line is considered. A furnace of this type can be used by the manufacturing industry for applications such as industrial baking, curing of paint, annealing or manufacturing through chemical deposition. The object that is to be heated moves along the furnace as it is heated following a specified temperature history. The spatial temperature distribution on the object is kept isothermal through the whole process. The temperature distribution of the heaters of the furnace should be changed as the object moves so that the specified temperature history can be satisfied. The design problem is transient where a series of inverse problems are solved. The process furnace considered is in the shape of a rectangular tunnel where the heaters are located on the top and the design object moves along the bottom. The inverse design approach is used for the solution, which is advantageous over a traditional trial-and-error solution where an iterative solution is required for every position as the object moves. The inverse formulation of the design problem is ill-posed and involves a set of Fredholm equations of the first kind. The use of advanced solvers that are able to regularize the resulting system is essential. These include the conjugate gradient method, the truncated singular value decomposition or Tikhonov regularization, rather than an ordinary solver, like Gauss-Seidel or Gauss elimination.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2078 ◽  
Author(s):  
Daniel Mejia-Parra ◽  
Diego Montoya-Zapata ◽  
Ander Arbelaiz ◽  
Aitor Moreno ◽  
Jorge Posada ◽  
...  

Interactive multi-beam laser machining simulation is crucial in the context of tool path planning and optimization of laser machining parameters. Current simulation approaches for heat transfer analysis (1) rely on numerical Finite Element methods (or any of its variants), non-suitable for interactive applications; and (2) require the multiple laser beams to be completely synchronized in trajectories, parameters and time frames. To overcome this limitation, this manuscript presents an algorithm for interactive simulation of the transient temperature field on the sheet metal. Contrary to standard numerical methods, our algorithm is based on an analytic solution in the frequency domain, allowing arbitrary time/space discretizations without loss of precision and non-monotonic retrieval of the temperature history. In addition, the method allows complete asynchronous laser beams with independent trajectories, parameters and time frames. Our implementation in a GPU device allows simulations at interactive rates even for a large amount of simultaneous laser beams. The presented method is already integrated into an interactive simulation environment for sheet cutting. Ongoing work addresses thermal stress coupling and laser ablation.


1996 ◽  
Vol 43 (9) ◽  
pp. 1525-1532 ◽  
Author(s):  
P. Ferreira ◽  
V. Senez ◽  
B. Baccus

2004 ◽  
Vol 40 (1) ◽  
pp. 94-102 ◽  
Author(s):  
S.-Y. Lee ◽  
W.G. Odendaal ◽  
J.D. vanWyk

Author(s):  
Michael Sciascia

For complex finite element problems it is often desirable to prescribe boundary conditions that are difficult to quantify. The analysis of a pressure vessel undergoing postweld heat treatment (PWHT) is an example of such a problem. The PWHT process is governed by Code rules, but the temperature and gradient requirements they impose are not sufficient to precisely describe the complete vessel temperature profile. The imposition of such a profile in the analysis results in uncertainty and errors. A suitable but difficult approach is to specify heater power instead of temperatures, letting the solver determine the temperature profile. Unfortunately, the individual heater power levels necessary to meet the Code requirements are usually not known in advance. Determining the power levels necessary is particularly difficult if a transient solution is required. A means of actively controlling the heaters during the FEA solution is requirement for this approach. A simple and adaptive control algorithm was incorporated into the FEA solver via its scripting capability. Heat flux boundary conditions (heater power) were applied instead of transient temperature boundary conditions. Heater power levels were optimized to achieve predetermined time/temperature goals as the solution proceeded. The algorithm described was successfully applied to a pressure vessel PWHT with 14 zones of control. The approach may be adapted to other problems and boundary conditions.


2021 ◽  
Author(s):  
Gurumurthy Kagita ◽  
Krishnakant V. Pudipeddi ◽  
Subramanyam V. R. Sripada

Abstract The Pressure-Area method is recently introduced in the ASME Boiler and Pressure Vessel (B&PV) Code, Section VIII, Division 2 to reduce the excessive conservatism of the traditional area-replacement method. The Pressure-Area method is based on ensuring that the resistive internal force provided by the material is greater than or equal to the reactive load from the applied internal pressure. A comparative study is undertaken to study the applicability of design rules for certain nozzles in shells using finite element analysis (FEA). From the results of linear elastic FEA, it is found that in some cases the local stresses at the nozzle to shell junctions exceed the allowable stress limits even though the code requirements of Pressure-Area method are met. It is also found that there is reduction in local stresses when the requirement of nozzle to shell thickness ratio is maintained as per EN 13445 Part 3. The study also suggests that the reinforcement of nozzles satisfy the requirements of elastic-plastic stress analysis procedures even though it fails to satisfy the requirements of elastic stress analysis procedures. However, the reinforcement should be chosen judiciously to reduce the local stresses at the nozzle to shell junction and to satisfy other governing failure modes such as fatigue.


Sign in / Sign up

Export Citation Format

Share Document