Increasing Operational Efficiency in a Radioactive Waste Processing Plant

Author(s):  
T. W. Turner ◽  
S. N. Watson

The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively delicensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to delicensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990s, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as ‘lean’ and ‘kaizen’ have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant at Harwell has continuously increased the throughput of RHILW, which should lead to significant programme savings.

2021 ◽  
Vol 8 (6) ◽  
pp. 619-640
Author(s):  
George Sikun Xu ◽  
◽  
Nicholas Chan ◽  

<abstract> <p>A large number of artificial-origin radionuclides from irradiation in small reactors and/or nuclear reactions in accelerators are currently used in non-nuclear industries such as education, oil and gas, consumer merchandise, research, and medicine. Radioactive wastes from the use of these radionuclides in non-nuclear industries include expired sealed radioactive sources, biological materials, radionuclide-containing chemicals, contaminated equipment, and very small quantities of used nuclear fuel. Although being less challenging and complex than nuclear energy production and research waste streams, these wastes are subject to the common nuclear regulations by the Canadian Nuclear Safety Commission, and are managed following domestic and international standards and guidelines made by the Canadian Standards Association, International Atomic Energy Agency, and International Organization for Standardization. Management practices used in the nuclear industry in Canada are commonly applied to the non-nuclear industry radioactive waste streams, such as waste handling, treatment, packaging, storage, transportation, clearance and exemptions, and disposal. The half-lives of radionuclides in non‑nuclear applications range from hours to thousands of years, and their activities in non-nuclear industrial applications can be as low as their clearance level or as high as the upper limits for intermediate level radioactive waste. Waste containing only short half-life radionuclides is placed in temporary storage to allow decay, and then is cleared and disposed of through non-radioactive waste routes. Non‑clearable waste materials are treated, consolidated, and managed along with radioactive waste generated from the nuclear industries at designated radioactive waste management sites.</p> </abstract>


Author(s):  
Johannes Rausch ◽  
Stefan Ahner

In the framework of the preparation for the decommissioning of the Chernobyl Nuclear Power Plant (ChNPP) an Industrial Complex for Solid Radwaste Management (ICSRM) is going to be built under the EC TACIS Program in the vicinity of ChNPP, comprising: • a solid waste retrieval facility (LOT 1), • a solid waste processing plant (LOT 2), and • a repository for the disposal of short-lived waste (LOT 3).


2004 ◽  
Vol 19 (2) ◽  
pp. 59-64
Author(s):  
Josef Neubauer

At the Austrian Research Centers Seibersdorf, there are several facilities in stalled for treatment of waste of low and intermediate radioactivity level (radwaste). A separate company within Centers, Nuclear Engineering Seibersdorf, has been formed recently, acting as a centralized facility for treatment, conditioning and storing of such waste within the country. The relevant treatment technology is applied depending on the waste category. In total about 6900 m3 of solid waste of low and intermediate radioactivity level originating from Austria was treated in the period between 1976 and 2002. Presently, there exists no final repository for radwaste in Austria. A study is under way to identify the structure for a long term storage facility.


MRS Advances ◽  
2017 ◽  
Vol 3 (19) ◽  
pp. 983-990 ◽  
Author(s):  
Michael I. Ojovan ◽  
Rebecca A. Robbins ◽  
Miklos Garamszeghy

ABSTRACTRadioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear reactors, nuclear fuel cycle facilities, research facilities and medical facilities and the through the use of radioisotopes in industrial applications. The waste needs to be treated and conditioned appropriately to provide wasteforms acceptable for safe storage and disposal. Conditioning of radioactive waste is an important step to prepare waste for long-term storage or disposal and includes the following processes:▪ Immobilization which may or may not also provide volume reduction, includinga) Low temperature processes andb) Thermal processes;▪ Containerization fora) Transport,b) Storage, andc) Disposal;▪ Overpacking of primary containersa) Prior to disposal andb) In a disposal facility as part of disposal process.Conditioning consists of operations that produce a waste package suitable for handling, transportation, storage and/or disposal and may be performed for a variety of reasons including standardization of practices and/or wasteforms, technical requirements for waste stability in relation to a repository design or safety case, technical requirements related to waste transportation, societal preferences, regulatory preferences, etc. This paper gives an overview of recent advances in conditioning of low- and intermediate-level radioactive waste.The paper is based on the new IAEA Handbook “Conditioning of Low- and Intermediate-Level Liquid, Solidified and Solid Waste” which is one of eight IAEA handbooks intended to provide guidance for evaluating and implementing various characterisation and radioactive waste processing and storage technologies before final disposal


Sign in / Sign up

Export Citation Format

Share Document