Safety Assessment of Geological Disposal of High-Level Radioactive Waste in Boom Clay: Relation With the Radionuclide Inventory

Author(s):  
Pierre Van Iseghem ◽  
Jan Marivoet

This paper discusses the impact of the parameter values used for the transport of radionuclides from high-level radioactive waste to the far-field on the long-term safety of a proposed geological disposal in the Boom Clay formation in Belgium. The methodology of the Safety Assessment is explained, and the results of the Safety Assessment for vitrified high-level waste and spent fuel are presented. The radionuclides having the strongest impact on the dose-to-man for both HLW glass and spent fuel are 79Se, 129I, 126Sn, 36Cl, and 99Tc. Some of them are volatile during the vitrification process, other radionuclides are activation products, and for many of them there is no accurate information on their inventory in the waste form. The hypotheses in the selection of the main parameter values are further discussed, together with the status of the R&D on one of the main dose contributing radionuclides (79Se).

2006 ◽  
Vol 932 ◽  
Author(s):  
Bruno Kursten ◽  
Frank Druyts

ABSTRACTThe underground formation that is currently being considered in Belgium for the permanent disposal of high-level radioactive waste and spent fuel is a 30-million-year-old argillaceous sediment (Boom Clay layer). This layer is located in the northeast of Belgium and extending under the Mol-Dessel nuclear site at a depth between 180 and 280 meter.Within the concept for geological disposal (multibarrier system), the metallic container is the primary engineered barrier. Its main goal is to contain the radioactive waste and to prevent the groundwater from coming into contact with the wasteform by acting as a tight barrier. The corrosion resistance of container materials is an important aspect in ensuring the tightness of the metallic container and therefore plays an important role in the safe disposal of HLW. The metallic container has to provide a high integrity, i.e. no through-the-wall corrosion should occur, at least for the duration of the thermal phase (500 years for vitrified HLW and 2000 years for spent fuel).An extensive corrosion evaluation programme, sponsored by the national authorities and the European Commission, was started in Belgium in the mid 1980's. The main objective was to evaluate the long-term corrosion performance of a broad range of candidate container materials. In addition, the influence of several parameters, such as temperature, oxygen content, groundwater composition (chloride, sulphate and thiosulphate), γ-radiation, … were investigated. The experimental approach consisted of in situ experiments (performed in the underground research facility, HADES), electrochemical experiments, immersion experiments and large scale demonstration tests (OPHELIE, PRACLAY). Degradation modes considered included general corrosion, localised corrosion (pitting) and stress corrosion cracking.This paper gives an overview of the more relevant experimental results, gathered over the past 25 years, of the Belgian programme in the field of container corrosion.


Author(s):  
Jacques Delay ◽  
Jiri Slovak ◽  
Raymond Kowe

The Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009 to tackle the remaining research, development and demonstration (RD&D) challenges with a view to fostering the implementation of geological disposal programmes for high-level and long-lived waste in Europe. The IGD-TP’s Vision is that “by 2025, the first geological disposal facilities for spent fuel, high-level waste and other long-lived radioactive waste will be operating safely in Europe”. Aside from most of European waste management organisations, the IGD-TP now has 110 members covering most of the RD&D actors in the field of implementing geological disposal of radioactive waste in Europe. The IGD-TP Strategic Research Agenda (SRA), that defines shared RD&D priorities with an important cooperative added value, is used as a basis for the Euratom programme. It provides a vehicle to emphasise RD&D and networking activities that are important for establishing safety cases and fostering disposal implementation. As the IGD-TP brings together the national organisations which have a mandate to implement geological disposal and act as science providers, its SRA also ensures a balance between fundamental science, implementation-driven RD&D and technological demonstration. The SRA is in turn supported by a Deployment Plan (DP) for the Joint Activities to be carried out by the Technology Platform with its members and participants. The Joint Activities were derived from the individual SRA Topics and prioritized and assigned a timeline for their implementation. The deployment scheme of the activities is updated on a yearly basis.


2016 ◽  
Vol 722 ◽  
pp. 59-65
Author(s):  
Markéta Kočová ◽  
Zdeňka Říhová ◽  
Jan Zatloukal

Nowadays manipulation and depositing of high-level radioactive waste has become the most important issue, which needs to be solved. High-level radioactive waste consists mainly of spent fuel elements from nuclear power plants, which cannot be deposited for long time in surface repositories in the same way as it is possible in case of low and medium level radioactive waste. The most effective and safe solution in longer time horizon seems to be deep geological repository of high level waste. In this process of deposition, large amount of specific conditions needs to be taken into account while designing the whole underground complex, because the materials and structures must fulfil all necessary requirements. Then adequate safety will be ensured.


2015 ◽  
Vol 79 (6) ◽  
pp. 1591-1597 ◽  
Author(s):  
R. Kowe ◽  
J. Delay ◽  
M. Hammarström ◽  
T. Beattie ◽  
M. Palmu

AbstractThe Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009 to facilitate international cooperation in common areas of research, development and demonstration (RD&D) with a view to advancing the implementation of geological disposal facilities for spent fuel, high-level and other long-lived waste in Europe.The IGD-TP's Vision is that “by 2025, the first geological disposal facilities for spent fuel, high-level waste and other long-lived radioactive waste will be operating safely in Europe”. Aside from most European waste management organisations, the IGD-TP currently has 124 members covering most of the RD&D actors in the field of implementing geological disposal of radioactive waste in Europe.Five years after its inception, the IGD-TP has been shown to play a leading role in coordinating joint actions for RD&D in radioactive waste geological disposal programmes. The work of the platform takes into account differences between the timing and challenges for the respective waste management programmes. Following implementation of Posiva's geological disposal facility in Finland it is expected that within the next 5 years the construction of the Swedish and French geological disposal facilities will commence. Within IGD-TP, the SecIGD2 project whose remit is “Coordination and Support Action under the 7th Framework programme” aims at supporting, at the European level, the networking and structuring of RD&D programmes and competences in countries with less advanced geological disposal programmes, including those in the new European Union Member States. Furthermore, the SecIGD2 supports the development and coordination of the necessary competences to meet the Vision 2025 as a part of the platform's Competence Maintenance, Education and Training (CMET) working group.


Author(s):  
Akira Kitamura ◽  
Reisuke Doi ◽  
Yasushi Yoshida

Japan Atomic Energy Agency (JAEA) established the thermodynamic database (JAEA-TDB) for performance assessment of geological disposal of high-level radioactive waste (HLW) and TRU waste. Twenty-five elements which were important for the performance assessment of geological disposal were selected for the database. JAEA-TDB enhanced reliability of evaluation and estimation of their solubility through selecting the latest and the most reliable thermodynamic data at present. We evaluated and estimated solubility of the 25 elements in the simulated porewaters established in the “Second Progress Report for Safety Assessment of Geological Disposal of HLW in Japan” using the JAEA-TDB and compared with those using the previous thermodynamic database (JNC-TDB). It was found that most of the evaluated and estimated solubility values were not changed drastically, but the solubility and speciation of dominant aqueous species for some elements using the JAEA-TDB were different from those using the JNC-TDB. We discussed about how to provide reliable solubility values for the performance assessment.


2012 ◽  
Vol 76 (8) ◽  
pp. 3475-3482 ◽  
Author(s):  
T. W. Hicks ◽  
S. Watson ◽  
S. Norris ◽  
G. Towler ◽  
D. Reedha ◽  
...  

AbstractThe 2008 UK government White Paper, published as part of the Managing Radioactive Waste Safety programme, identified benefits to disposing of all of the UK's higher activity wastes at the same site. That is, a single geological disposal facility (GDF) could be constructed that consists of a module for low- and intermediate-level waste, and a module for high-level waste and spent fuel.A safety case for a co-located GDF will have to consider the extent to which evolving thermo-hydro-mechanical-chemical and gas (THMCG) conditions in and around one module may affect conditions in the other module, including the extent to which barrier performance and radionuclide migration behaviour could be altered. Several research projects have been undertaken on behalf of Radioactive Waste Management Directorate aimed at understanding and evaluating the THMCG interactions that might occur during the disposal facility operational and post-closure phases.This paper describes research on THMCG interactions between disposal modules based on illustrative GDF designs for different host rock environments. Interactions were evaluated using simple analytical solutions and detailed three-dimensional models. The analyses demonstrated that interactions can be controlled by design constraints.


2017 ◽  
pp. 38-45 ◽  
Author(s):  
V. Shestopalov ◽  
Iu. Shybetskyi

The purpose of this paper is to analyze the state of geological repository development in Ukraine for the disposal of high-level waste and, possibly, of spent nuclear fuel. The data on state policy, activities and plans for disposal of radioactive waste, as well as on the results of scientific research aimed at the development of a geological repository are summarized. These data include siting, development of geological disposal concepts and safety assessment of selected concepts. Based on the analysis of the listed data, the main problems and further actions are identified.


Sign in / Sign up

Export Citation Format

Share Document