Correlations of the Holdup and the Frictional Pressure Drop in Air-Water Two-Phase Flow in a Flat Capillary Rectangular Channel

Author(s):  
Hideo Ide ◽  
Tohru Fukano

Both vertical upward and horizontal gas-liquid two-phase flows in a flat capillary rectangular channel were studied to clarify the flow phenomena, the holdup and the frictional pressure drop. The dimension of the channel used was 9.9 mm × 1.1 mm. The orientations of the channel were with the wide side vertical and the wide side horizontal. The differences between the flow characteristics in such orientations were investigated. New correlations of holdup and frictional pressure drop for flat capillary channels are proposed, in which the effect of aspect ratio has been taken into consideration.

Volume 3 ◽  
2004 ◽  
Author(s):  
Hideo Ide ◽  
Tohru Fukano

Experiments on the horizontal and the vertical upward gas-liquid two-phase flows were done to clarify the flow phenomena in a flat capillary rectangular channel. The flow patterns, the passing frequency and the velocity of liquid lumps, the holdup and the frictional pressure drop in two-phase flow were investigated. The dimension of the channel used was 9.9 mm × 1.1 mm. The orientations of the channel were with the wide side vertical and the wide side horizontal. The differences between the flow phenomena in such orientations were investigated. The effects of the orientation of the duct, the aspect ratio of the cross section of the channel, superficial gas velocity and superficial liquid velocity on those two-phase flow parameters were examined. The obtained data of the holdup and the frictional pressure drop could not be correlated well with those correlations which have been proposed so far. New correlations of holdup and frictional pressure drop for a flat capillary channel are proposed. The predictions by those correlations have sufficient accuracy for both the vertical and the horizontal flows.


2004 ◽  
Vol 126 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Peter M.-Y. Chung ◽  
Masahiro Kawaji ◽  
Akimaro Kawahara ◽  
Yuichi Shibata

An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in horizontal microchannels. A water-nitrogen gas mixture was pumped through a 96 μm square microchannel and the resulting flow pattern, void fraction and frictional pressure drop data were compared with those previously reported by the authors for a 100 μm circular microchannel. The pressure drop data were best estimated using a separated-flow model and the void fraction increased non-linearly with volumetric quality, regardless of the channel shape. However, the flow maps exhibited transition boundaries that were shifted depending on the channel shape.


Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


Author(s):  
Hideo Ide ◽  
Tohru Fukano

Air-liquid two-phase flow in a horizontal flat capillary rectangular channel has been studied to clarify the effects of concentration of surfactant solution on the flow phenomena, such as flow patterns, pressure drop, void fraction and so on. The concentrations of surfactant solution were 0, 10, 50 and 100 ppm and the surface tension of each solution was reduced to about 34mN/m from that of pure water of about 72mN/m. The dimension of the channel used was 10.0 mm × 1.0 mm. The drag reduction by mixing the surfactant was examined in both the single phase flow and the two-phase flow. The experimental data of two-phase frictional pressure drop and holdup were compared with the respective correlations which were previously proposed by the other researchers and the present authors. Finally, we proposed new correlations of two-phase frictional pressure drop and holdup in which the effect of surface tension and the aspect ratio of cross section of channel were taken into account.


Author(s):  
Hideo Ide ◽  
Tohru Fukano

Air-liquid two-phase flow in a horizontal flat capillary rectangular channel has been studied to clarify the effects of surface tension on the flow phenomena, such as flow patterns, holdup and frictional pressure drop and so on. The concentrations of surfactant solution were 0, 10, 50 and 100 ppm and the surface tension of each solution was reduced to about 34mN/m from that of pure water of about 72mN/m. The dimension of the channel used was 10.0 mm×1.0 mm. The drag reduction by mixing the surfactant was examined in both the single phase flow and the two-phase flow. The experimental data of void fraction and two-phase frictional pressure drop were compared with the respective correlations which were previously proposed by the other researchers. Finally, we proposed new correlations of two-phase frictional pressure drop in which the effect of surface tension and the aspect ratio of cross section of channel were taken into account.


Sign in / Sign up

Export Citation Format

Share Document