Heat Transfer and Pressure Drop Characteristics for HFE-7100 Within Microchannel Heat Sinks

Author(s):  
Chun-Min Huang ◽  
Yeau-Ren Jeng ◽  
Kai-Shing Yang ◽  
Chi-Chuan Wang ◽  
Yu-Lieh Wu

This study examines the heat transfer and pressure drop characteristics of the dielectric fluid HFE-7100 within multiport microchannel heat sink having a square configuration rectangular with a hydraulic diameter of 460 μm. For a lower mass flux of 100 or 200 kg/m2·s, it is found that the heat transfer coefficients are roughly independent of heat flux and vapor quality provided that no flow reversal occurs. However, with the presence of flow reversal at an elevated heat flux, appreciable drop of heat transfer coefficient is encountered. The flow reversal also plays a significant role in the overall pressure drop. Without flow reversal, the pressure drop for higher heat flux always exceeds that of lower heat flux due to acceleration contribution. However, the presence of flow reversal may offset the contribution of acceleration and results in a negligible effect of heat flux. For a higher mass flux like 300 kg/m2·s, the heat transfer coefficients are virtually independent of vapor quality and heat flux.

2017 ◽  
Vol 25 (02) ◽  
pp. 1750013 ◽  
Author(s):  
Pham-Quang Vu ◽  
Kwang-Il Choi ◽  
Jong-Taek Oh ◽  
Honggi Cho

The condensation heat transfer coefficients and pressure drops of R410A and R22 flowing inside a horizontal aluminum multiport mini-channel tube having 18 channels are investigated. Experimental data are presented for the range of vapor quality from 0.1 to 0.9, mass flux from 50 to 500[Formula: see text]kg/m2s, heat flux from 3 to 15[Formula: see text]kW/m2 and the saturation temperature at 48[Formula: see text]C. The pressure drop across the test section was directly measured by a differential pressure transducer. At a small scale, the noncircular cross-sections can enhance the effect of the surface tension. The average heat transfer coefficient increased with the increase of vapor quality, mass flux and heat flux. Under the same test conditions, the heat transfer coefficients of R22 are higher than those for R410A, the pressure drops for R410A are 7–19% lower than those of R22. The lower pressure drop of R410A has an important advantage as an alternative working fluid for R22 in air-conditioning and heat pump systems.


Author(s):  
C. Aprea ◽  
A. Greco ◽  
G. P. Vanoli

R22 is the most widely employed HCFC working fluid in vapour compression plant. HCFCs must be replaced within 2020. Major problems arise with the substitution of the working fluids, related to the decrease in performance of the plant. Therefore, extremely accurate design procedures are needed. The relative sizing of each of the components of the plant is crucial for cycle performance. For this reason, the knowledge of the new fluids heat transfer characteristics in condensers and evaporators is required. The local heat transfer coefficients and pressure drop of pure R22 and of the azeotropic mixture R507 (R125-R143a 50%/50% in weight) have been measured during convective boiling. The test section is a smooth horizontal tube made of a with a 6 mm I.D. stainless steel tube, 6 m length, uniformly heated by Joule effect. The effects of heat flux, mass flux and evaporation pressure on the heat transfer coefficients are investigated. The evaporating pressure varies within the range 3 ÷10 bar, the refrigerant mass flux within the range 200 ÷ 1000 kg/m2s, the heat flux within 0 ÷ 44 kW/m2. A comparison have been carried out between the experimental data and those predicted by means of the most credited literature relationships.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Giovanni A. Longo

This paper presents the experimental heat transfer coefficients and pressure drop measured during HC-600a (isobutane), HC-290 (propane), and HC-1270 (propylene) vaporization inside a brazed plate heat exchanger (BPHE): the effects of heat flux, refrigerant mass flux, saturation temperature (pressure), evaporator outlet condition, and fluid properties are investigated. The experimental tests include 172 vaporization runs carried out at three different saturation temperatures (10, 15, and 20 °C) and four different evaporator outlet conditions (outlet vapor quality around 0.80 and 1.00, outlet vapor super-heating around 5 and 10 °C). The refrigerant mass flux ranges from 6.6 to 23.9 kg m−2 s−1 and the heat flux from 4.3 to 19.6 kW m−2. The heat transfer and pressure drop measurements have been complemented with IR thermography analysis in order to quantify the portion of the heat transfer surface affected by vapor super-heating. The heat transfer coefficients show great sensitivity to heat flux, evaporator outlet condition and fluid properties and weak sensitivity to saturation temperature (pressure). The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on refrigerant mass flux. HC-1270 exhibits heat transfer coefficients 6–12% higher than HC-290 and 35–50% higher than HC-600a and frictional pressure drops 5–10% lower than HC-290 and 60% lower than HC-600a. The experimental heat transfer coefficients are compared with two well-known correlations for nucleate boiling and a linear equation for frictional pressure drop is proposed.


Author(s):  
Giovanni A. Longo

This paper presents the experimental heat transfer coefficients and pressure drop measured during HC-600a (Isobutane), HC-290 (Propane) and HC-1270 (Propylene) vaporisation inside a small brazed plate heat exchanger: the effects of heat flux, refrigerant mass flux, saturation temperature (pressure), outlet conditions and fluid properties are investigated. The experimental tests include 172 vaporisation runs carried out at three different saturation temperatures: 10, 15 and 20°C. The refrigerant mass flux ranges from 6.6 to 23.9 kg/m2s and the heat flux from 4.3 to 19.6 kW/m2. The heat transfer coefficients show great sensitivity to heat flux, outlet conditions and fluid properties and weak sensitivity to saturation temperature (pressure). The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on refrigerant mass flux. HC-1270 shows heat transfer coefficients 6–12% higher than HC-290 and 35–50% higher than HC-600a and frictional pressure drops 5–10% lower than HC-290 and 2.5 time lower than HC-600a. The experimental heat transfer coefficients are compared with two well-known equations for nucleate boiling and a correlation for frictional pressure drop is proposed.


Author(s):  
Siyoung Jeong ◽  
Eunsang Cho ◽  
Hark-koo Kim

Evaporation heat transfer and pressure drop characteristics of carbon dioxide were investigated in a multi-channel micro tube. The aluminum tube has 3 square channels with a hydraulic diameter of 2mm, a wall thickness of 1.5mm, and a length of 5m. The tube was heated directly by electric current. Experiments were conducted at heat fluxes ranging 4–16 kW/m2, mass fluxes from 150 to 750 kg/m2s, evaporative temperature from 0 to 10°C, and qualities from 0 to superheated state. The heat transfer coefficient measured was in the range of 6–15kW/m2K, and the pressure drop was 3–23kPa/m. For the qualities lower than 0.5, the heat transfer coefficient was found to increase with the quality, which is assumed to be the effect of convective boiling. For the qualities higher than 0.6, sudden drop in heat transfer coefficients was sometimes observed due to local dry-out. It was found that dry-out occurred at lower quality if mass flux was smaller. The average heat transfer coefficient was found to increase with increasing heat flux, mass flux, and evaporation temperature, of which the effect of heat flux was the greatest. At given experimental conditions the pressure drop increased almost linearly with increasing quality. The total pressure drop was found to increase with increasing heat flux, mass flux, and evaporation temperature, of which the effect of mass flux was the greatest. From the experimental results simple correlations for heat transfer coefficients and pressure drop were developed.


Author(s):  
Saptarshi Basu ◽  
Sidy Ndao ◽  
Gregory J. Michna ◽  
Yoav Peles ◽  
Michael K. Jensen

An experimental study of two-phase heat transfer coefficients was carried out using R134a in uniformly heated horizontal circular microtubes with diameters of 0.50 mm and 1.60 mm. The effects of mass flux, heat flux, saturation pressure, and vapor quality on heat transfer coefficients were studied. The flow parameters investigated were as follows: exit pressures of 490, 670, 890, and 1160 kPa; mass fluxes of 300–1500 kg/m2s; heat fluxes of 0–350 kW/m2; inlet subcooling of 5, 20, and 40 °C; and exit qualities of 0 to 1.0. The parametric trends presented in the study are consistent with published literature. Heat transfer coefficients increased with increasing heat flux and saturation pressure while they were independent of variations in mass flux. Vapor quality had a negligible influence on heat transfer coefficients. For the conditions studied, the trends indicated that the dominant heat transfer mechanism was nucleate boiling. The experimental data was compared to three microchannel correlations — the Lazarek-Black, the Kandlikar, and the Tran Correlations. None of the correlations predicted the experimental data very well, although they all predicted the correct trend within limits of experimental error.


Author(s):  
Koichi Araga ◽  
Keisuke Okamoto ◽  
Keiji Murata

This paper presents an experimental investigation of the forced convective boiling of refrigerant HCFC123 in a mini-tube. The inner diameters of the test tubes, D, were 0.51 mm and 0.30 mm. First, two-phase frictional pressure drops were measured under adiabatic conditions and compared with the correlations for conventional tubes. The frictional pressure drop data were lower than the correlation for conventional tubes. However, the data were qualitatively in accord with those for conventional tubes and were correlated in the form φL2−1/Xtt. Next, heat transfer coefficients were measured under the conditions of constant heat flux and compared with those for conventional tubes and for pool boiling. The heat transfer characteristics for mini-tubes were different from those for conventional tubes and quite complicated. The heat transfer coefficients for D = 0.51 mm increased with heat flux but were almost independent of mass flux. Although the heat transfer coefficients were higher than those for a conventional tube with D = 10.3 mm and for pool boiling in the low quality region, they decreased gradually with increasing quality. The heat transfer coefficients for D = 0.30 mm were higher than those for D = 0.51 mm and were almost independent of both mass flux and heat flux.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Chang Yong Park ◽  
Pega Hrnjak

Abstract C O 2 flow boiling heat transfer coefficients and pressure drop in a 3.5mm horizontal smooth tube are presented. Also, flow patterns were visualized and studied at adiabatic conditions in a 3mm glass tube located immediately after a heat transfer section. Heat was applied by a secondary fluid through two brass half cylinders to the test section tubes. This research was performed at evaporation temperatures of −15°C and −30°C, mass fluxes of 200kg∕m2s and 400kg∕m2s, and heat flux from 5kW∕m2 to 15kW∕m2 for vapor qualities ranging from 0.1 to 0.8. The CO2 heat transfer coefficients indicated the nucleate boiling dominant heat transfer characteristics such as the strong dependence on heat fluxes at a mass flux of 200kg∕m2s. However, enhanced convective boiling contribution was observed at 400kg∕m2s. Surface conditions for two different tubes were investigated with a profilometer, atomic force microscope, and scanning electron microscope images, and their possible effects on heat transfer are discussed. Pressure drop, measured at adiabatic conditions, increased with the increase of mass flux and quality, and with the decrease of evaporation temperature. The measured heat transfer coefficients and pressure drop were compared with general correlations. Some of these correlations showed relatively good agreements with measured values. Visualized flow patterns were compared with two flow pattern maps and the comparison showed that the flow pattern maps need improvement in the transition regions from intermittent to annular flow.


Author(s):  
Cheol Huh ◽  
Moo Hwan Kim

With a single microchannel and a series of microheaters made with MEMS technique, two-phase pressure drop and local flow boiling heat transfer were investigated using deionized water in a single horizontal rectangular microchannel. The test microchannel has a hydraulic diameter of 100 μm and length of 40 mm. A real time observation of the flow patterns with simultaneous measurement are made possible. Tests are performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes of from 100 to 600 kW/m2. The experimental local flow boiling heat transfer coefficients and two-phase frictional pressure gradient are evaluated and the effects of heat flux, mass flux, and vapor qualities on flow boiling are studied. Both the evaluated experimental data are compared with existing correlations. The experimental heat transfer coefficients are nearly independent on mass flux and the vapor quality. Most of all correlations do not provide reliable heat transfer coefficients predictions with vapor quality and prediction accuracy. As for two-phase pressure drop, the measured pressure drop increases with the mass flux and heat flux. Most of all existing correlations of two-phase frictional pressure gradient do not predict the experimental data except some limited conditions.


Author(s):  
Bin Ren ◽  
Xiaoying Tang ◽  
Hongliang Lu ◽  
Dongliang Fu ◽  
Yannan Du ◽  
...  

It is the simplest and most feasible method to enhance heat transfer by replacing the smooth tube with various kinds of special-shaped enhanced tubes. In this paper, the characteristics of condensation and flow resistance inside horizontal corrugated low finned tubes were studied experimentally. The effects of steam inlet conditions and condensation tubes structural parameters were analyzed. The results showed that the heat transfer performance inside corrugated low finned tubes was greater than that inside smooth tubes. Like inside smooth tubes, the heat transfer coefficients increased with the vapor quality and steam mass flux. But the enhancement rate showed the opposite trend. And the heat transfer coefficients inside corrugated low finned tubes increased with the decrease of pitch and increase of protrusion height. Meanwhile, the variation trend of pressure drop gradient changing with inlet conditions and construal parameters was consistent with trend of heat transfer coefficient. The performance evaluation criteria were used to evaluate the comprehensive performance. It was found that the maximum performance evaluation factor was acquired at the minimum vapor quality and mass flux. The maximum value was 2.24 happened in the tube with pitch of 6 mm and height of 0.7mm. Finally, both the correlation for heat transfer coefficient and correlation for pressure drop gradient were developed by fitting experimental data. And this would provide calculation foundations for the design of horizontal condensers with corrugated low finned tubes.


Sign in / Sign up

Export Citation Format

Share Document