The KORSAR Computer Code Modeling of Stratified Two-Phase Flow Hydrodynamics in Horizontal Pipes

Author(s):  
Yu. V. Yudov

The KORSAR best estimate computer code has been developed at NITI since 1996. It is designed to numerically simulate transient and accident conditions in VVER-type reactors /1/. From 1999 and on, the code development activity has been coordinated by the Center for Computer Code Development under Russia’s Minatom.

Author(s):  
Jingjing Li ◽  
Tao Zhou ◽  
Mingqiang Song ◽  
Yanping Huang

The gas-liquid two phase flow oscillation in vertical parallel natural circulation channels was performed by the best estimate system computer code Relap5. The effects of symmetry and dissymmetry degree of heated power to flow oscillation and the effects of symmetry and dissymmetry throttling to flow oscillation were researched. The results says that when the twin channels under the same conditions of geometry and boundary, the parameters of the twin channel such as flow are the same. So under these conditions the twin channels can be researched as single channel. It is more possible of flow oscillation for the channels under condition of dissymmetry heating. The use of throttling will make the channels more stable, it is more stable when the throttling coefficient increases. With the implement of dissymmetry throttling, the system is possible for out of phase flow oscillation.


2020 ◽  
Vol 8 (12) ◽  
pp. 1000
Author(s):  
Lizeth Torres ◽  
José Noguera ◽  
José Enrique Guzmán-Vázquez ◽  
Jonathan Hernández ◽  
Marco Sanjuan ◽  
...  

We study a high-viscosity two-phase flow through an analysis of the corresponding pressure signals. In particular, we investigate the flow of a glycerin–air mixture moving through a horizontal pipeline with a U-section installed midway along the pipe. Different combinations of liquid and air mass flow rates are experimentally tested. Then, we examine the moments of the statistical distributions obtained from the resulting pressure time series, in order to highlight the significant dynamical traits of the flow. Finally, we propose a novel correlation with two dimensionless parameters: the Euler number and a mass-flow-rate ratio to predict the pressure gradient in high-viscosity two-phase flow. Distinctive variations of the pressure gradients are observed in each section of the pipeline, which suggest that the local flow dynamics must not be disregarded in favor of global considerations.


1978 ◽  
Vol 56 (6) ◽  
pp. 653-663 ◽  
Author(s):  
M. K. Nicholson ◽  
K. Aziz ◽  
G. A. Gregory

2012 ◽  
Vol 433-440 ◽  
pp. 463-470
Author(s):  
Lei Liu ◽  
Xin Feng Guo ◽  
Qiu Yue Guo ◽  
Hui Qing Fan ◽  
Zhu Hai Zhong

It is significant to make researches on drag reduction in two-phase transport pipeline because two-phase flow has high energy dissipation. API X 52 steel pipe with diameter of 40mm is used in this paper to simulate pipeline with different inclination geometry including horizontal, up-inclined and vertical sections. The up-inclined section has an inclination angle of eight degree. Experiments and theoretical analysis are carried out to study the drag reduction characteristics of gas-liquid two-phase flow in these three sections. The drag reducing agents used here is polyacrylamide. It is found that two-phase drag reduction varies with pipe inclination geometry. The largest drag reduction efficiency occurs in horizontal pipes and which is up to seventy percent. Drag reduction efficiency in up-inclined section is up to sixty percent. Drag reduction in vertical section is the lowest and which can be up to about thirty percent. A mechanistic drag reduction model is proposed to predict drag reduction in gas-liquid two-phase flow. The results predicted are in good agreement with the experiment data.


1996 ◽  
Vol 10 (1) ◽  
pp. 39-49
Author(s):  
Tadashi SAKAGUCHI ◽  
Yoshihiko FUJII ◽  
Shigeo HOSOKAWA ◽  
Hisato MINAGAWA ◽  
Takashi UENO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document