Effect of Hydrated Salt Additives on Film Boiling Behavior at Vapor Film Collapse

Author(s):  
Takahiro Arai ◽  
Masahiro Furuya

A high-temperature stainless-steel sphere was immersed into various salt solutions to test film boiling behavior at vapor film collapse. The film boiling behavior around the sphere was observed with a high-speed digital-video camera. Because salt additives enhanced condensation heat transfer, the observed vapor film was thinner. Surface temperature of the sphere was measured. Salt additives increased the quenching (vapor film collapse) temperature, because frequency of direct contact between sphere surface and coolant increased. Quenching temperature rises with increased salt concentration. The quenching temperature, however, approaches a constant value when the slat concentration is close to its saturation concentration. The quenching temperature is well correlated with ion molar concentration, which is a number density of ions, regardless of the type of hydrated salts.

Author(s):  
Takahiro Arai ◽  
Masahiro Furuya

A high-temperature stainless steel sphere was immersed into various salt solutions to investigate film boiling behavior at vapor film collapse. The film boiling behavior around the sphere was observed with a high-speed digital-video camera. Because the salt additives enhance the condensation heat transfer, the observed vapor film was thinner. The surface temperature of the sphere was measured. Salt additives increased the quenching (vapor film collapse) temperature because the frequency of direct contact between the sphere surface and the coolant increased. Quenching temperature increases with increased salt concentration. The quenching temperature, however, approaches a constant value when the salt concentration is close to its saturation concentration. The quenching temperature is well correlated with ion molar concentration, which is a number density of ions, regardless of the type of hydrated salts.


Author(s):  
Takahiro Arai ◽  
Masahiro Furuya

A high-temperature stainless-steel sphere was immersed into Al2O3 nanofluid to investigate film boiling heat transfer and collapse of vapor film. Surface temperature is referred to the measured value of thermocouples embedded into and welded onto a surface of the sphere. A direct contact between the immersed sphere and Al2O3 nanofluids is quantified by the acquired electric conductivity. The Al2O3 nanofluid concentration is varied from 0.024 to 1.3 vol%. A film boiling heat transfer rate of Al2O3 nanofluid is almost the same or slightly lower than that of water. A quenching temperature rises slightly with increased the Al2O3 nanofluid concentrations. In both water and Al2O3 nanofluid, the direct contact signals between the sphere and coolant were not detected before vapor film collapse.


Author(s):  
Kalpak P. Gatne ◽  
Milind A. Jog ◽  
Raj M. Manglik

A study of the normal impact of liquid droplets on a dry horizontal substrate is presented in this paper. The impact dynamics, spreading and recoil behavior are captured using a high-speed digital video camera at 2000 frames per second. A digital image processing software was used to determine the drop spread and height of the liquid on the surface from each frame. To ascertain the effects of liquid viscosity and surface tension, experiments were conducted with four liquids (water, ethanol, propylene glycol and glycerin) that have vastly different fluid properties. Three different Weber numbers (20, 40, and 80) were considered by altering the height from which the drop is released. The high-speed photographs of impact, spreading and recoil are shown and the temporal variations of dimensionless drop spread and height are provided in the paper. The results show that changes in liquid viscosity and surface tension significantly affect the spreading and recoil behavior. For a fixed Weber number, lower surface tension promotes greater spreading and higher viscosity dampens spreading and recoil. Using a simple scale analysis of energy balance, it was found that the maximum spread factor varies as Re1/5 when liquid viscosity is high and viscous effects govern the spreading behavior.


Author(s):  
Tomomichi Nakamura ◽  
Hiroshi Haruguchi ◽  
Hiroyuki Nakajima ◽  
Toyohiro Sawada ◽  
Kozo Sugiyama

The importance of the in-flow oscillation of a single cylinder in cross-flow has been highlighted since an accident in a FBR-type reactor. In-flow oscillations have also been observed in tube arrays. This report is an experimental study on this phenomenon using totally nine cylinders in a water tunnel. Six cases, one single cylinder, two & three cylinders in parallel & in tandem, and a nine cylinder bundle, are examined. Every cylinder can move only in in-flow direction. The motion of cylinders is measured by the strain gages and by a high-speed digital video camera. The results are compared with the visualized vortex motion.


Author(s):  
In-Cheol Chu ◽  
Chul-Hwa Song

A series of experiments were carried out to investigate the bubble nucleation to lift-off phenomena for a subcooled boiling flow in a vertical annulus channel. A high speed digital video camera was used to capture the dynamics of the bubble nucleation to lift-off process. A total of 148 recordings were made, and the bubble lift-off diameter and the bubble nucleation frequency were evaluated for 118 recordings up to now. The basic features of the lift-off diameter and nucleation frequency were addressed based on the present observation. A database for the bubble lift-off diameter was built by gathering and summarizing the data of Prodanovic et al., Situ et al., and the present work. The prediction capability of Unal’s model, Situ et al.’s model, and Prodanovic et al.’s correlation was evaluated against the database. The best prediction results were obtained by modifying the wall superheat correlation in Unal’s model.


Author(s):  
Tomomichi Nakamura ◽  
Takafumi Yoshikawa ◽  
Taku Yoshimura ◽  
Hironobu Kondo

The importance of the in-flow oscillation of a single cylinder in cross-flow has been spotlighted since an accident in a FBR-type reactor. However, the in-flow oscillation can be observed in tube arrays of heat exchangers. Previous reports show some interesting phenomena on the oscillation of cylinder arrays, which have a same pitch between cylinders. This paper shows the effect of the pitch ratio of a cylinder array on the characteristics of those phenomena, especially in in-flow direction, where every cylinder can move only in this direction. The motion of cylinders is measured by attached strain gages and by a high-speed digital video camera.


Sign in / Sign up

Export Citation Format

Share Document