A Study on Stream-Wise Oscillation of Cylinder Arrays: Effect of Pitch Ratio

Author(s):  
Tomomichi Nakamura ◽  
Takafumi Yoshikawa ◽  
Taku Yoshimura ◽  
Hironobu Kondo

The importance of the in-flow oscillation of a single cylinder in cross-flow has been spotlighted since an accident in a FBR-type reactor. However, the in-flow oscillation can be observed in tube arrays of heat exchangers. Previous reports show some interesting phenomena on the oscillation of cylinder arrays, which have a same pitch between cylinders. This paper shows the effect of the pitch ratio of a cylinder array on the characteristics of those phenomena, especially in in-flow direction, where every cylinder can move only in this direction. The motion of cylinders is measured by attached strain gages and by a high-speed digital video camera.

Author(s):  
Tomomichi Nakamura ◽  
Hironobu Kondo

The importance of the in-flow oscillation of a single cylinder in cross-flow has been in the spotlight since the accident in a FBR-type reactor. In-flow oscillations can also be observed in heat exchanger tube arrays. Previous reports show some interesting phenomena on the oscillation of cylinder arrays. In this paper, detailed observations on the effect of the pitch ratio for pairs of cylinders, in parallel and in tandem, is highlighted in the range of low flow velocities, where each cylinder can move only in a given direction. The motion of the cylinders is measured by attached strain gages and by a high-speed digital video camera.


Author(s):  
Tomomichi Nakamura ◽  
Hiroshi Haruguchi ◽  
Hiroyuki Nakajima ◽  
Toyohiro Sawada ◽  
Kozo Sugiyama

The importance of the in-flow oscillation of a single cylinder in cross-flow has been highlighted since an accident in a FBR-type reactor. In-flow oscillations have also been observed in tube arrays. This report is an experimental study on this phenomenon using totally nine cylinders in a water tunnel. Six cases, one single cylinder, two & three cylinders in parallel & in tandem, and a nine cylinder bundle, are examined. Every cylinder can move only in in-flow direction. The motion of cylinders is measured by the strain gages and by a high-speed digital video camera. The results are compared with the visualized vortex motion.


Author(s):  
Tomomichi Nakamura ◽  
Shinichiro Hagiwara ◽  
Joji Yamada ◽  
Kenji Usuki

In-flow instability of tube arrays is a recent major issue in heat exchanger design since the event at a nuclear power plant in California [1]. In our previous tests [2], the effect of the pitch-to-diameter ratio on fluidelastic instability in triangular arrays is reported. This is one of the present major issues in the nuclear industry. However, tube arrays in some heat exchangers are arranged as a square array configuration. Then, it is important to study the in-flow instability on the case of square arrays. The in-flow fluidelastic instability of square arrays is investigated in this report. It was easy to observe the in-flow instability of triangular arrays, but not for square arrays. The pitch-to-diameter ratio, P/D, is changed from 1.2 to 1.5. In-flow fluidelastic instability was not observed in the in-flow direction. Contrarily, the transverse instability is observed in all cases including the case of a single flexible cylinder. The test results are finally reported including the comparison with the triangular arrays.


Author(s):  
John Mahon ◽  
Paul Cheeran ◽  
Craig Meskell

An experimental study of the surface spanwise pressure on a cylinder in the third row of two normal triangular tube arrays (P/d = 1.32 and 1.58) with air cross flow has been conducted. A range of flow velocities were examined. The correlation of surface pressure fluctuations due to various vibration excitation mechanisms along the span of heat exchanger tubes has been assessed. The turbulent buffeting is found to be uncorrelated along the span which is consistent with generally accepted assumptions in previous studies. Vortex shedding and acoustic resonances were well correlated along the span of the cylinder, with correlations lengths approaching the entire length of the cylinder. Jet switching was observed in the pitch ratio of 1.58 and was found to be correlated along the cylinder, although the spatial behaviour is complex. This result suggests that the excitation force used in fretting wear models may need to be updated to include jet switching in the calculation.


Author(s):  
Takahiro Arai ◽  
Masahiro Furuya

A high-temperature stainless-steel sphere was immersed into various salt solutions to test film boiling behavior at vapor film collapse. The film boiling behavior around the sphere was observed with a high-speed digital-video camera. Because salt additives enhanced condensation heat transfer, the observed vapor film was thinner. Surface temperature of the sphere was measured. Salt additives increased the quenching (vapor film collapse) temperature, because frequency of direct contact between sphere surface and coolant increased. Quenching temperature rises with increased salt concentration. The quenching temperature, however, approaches a constant value when the slat concentration is close to its saturation concentration. The quenching temperature is well correlated with ion molar concentration, which is a number density of ions, regardless of the type of hydrated salts.


Author(s):  
Kalpak P. Gatne ◽  
Milind A. Jog ◽  
Raj M. Manglik

A study of the normal impact of liquid droplets on a dry horizontal substrate is presented in this paper. The impact dynamics, spreading and recoil behavior are captured using a high-speed digital video camera at 2000 frames per second. A digital image processing software was used to determine the drop spread and height of the liquid on the surface from each frame. To ascertain the effects of liquid viscosity and surface tension, experiments were conducted with four liquids (water, ethanol, propylene glycol and glycerin) that have vastly different fluid properties. Three different Weber numbers (20, 40, and 80) were considered by altering the height from which the drop is released. The high-speed photographs of impact, spreading and recoil are shown and the temporal variations of dimensionless drop spread and height are provided in the paper. The results show that changes in liquid viscosity and surface tension significantly affect the spreading and recoil behavior. For a fixed Weber number, lower surface tension promotes greater spreading and higher viscosity dampens spreading and recoil. Using a simple scale analysis of energy balance, it was found that the maximum spread factor varies as Re1/5 when liquid viscosity is high and viscous effects govern the spreading behavior.


Author(s):  
In-Cheol Chu ◽  
Chul-Hwa Song

A series of experiments were carried out to investigate the bubble nucleation to lift-off phenomena for a subcooled boiling flow in a vertical annulus channel. A high speed digital video camera was used to capture the dynamics of the bubble nucleation to lift-off process. A total of 148 recordings were made, and the bubble lift-off diameter and the bubble nucleation frequency were evaluated for 118 recordings up to now. The basic features of the lift-off diameter and nucleation frequency were addressed based on the present observation. A database for the bubble lift-off diameter was built by gathering and summarizing the data of Prodanovic et al., Situ et al., and the present work. The prediction capability of Unal’s model, Situ et al.’s model, and Prodanovic et al.’s correlation was evaluated against the database. The best prediction results were obtained by modifying the wall superheat correlation in Unal’s model.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Paul Feenstra ◽  
David S. Weaver ◽  
Tomomichi Nakamura

Laboratory experiments were conducted to determine the flow-induced vibration response and fluidelastic instability threshold of model heat exchanger tube bundles subjected to a cross-flow of refrigerant 11. Tube bundles were specially built with tubes cantilever-mounted on rectangular brass support bars so that the stiffness in the streamwise direction was about double that in the transverse direction. This was designed to simulate the tube dynamics in the U-bend region of a recirculating-type nuclear steam generator. Three model tube bundles were studied, one with a pitch ratio of 1.49 and two with a smaller pitch ratio of 1.33. The primary intent of the research was to improve our understanding of the flow-induced vibrations of heat exchanger tube arrays subjected to two-phase cross-flow. Of particular concern was to compare the effect of the asymmetric stiffness on the fluidelastic stability threshold with that of axisymmetric stiffness arrays tested most prominently in literature. The experimental results are analyzed and compared with existing data from literature using various definitions of two-phase fluid parameters. The fluidelastic stability thresholds of the present study agree well with results from previous studies for single-phase flow. In two-phase flow, the comparison of the stability data depends on the definition of two-phase flow velocity.


2011 ◽  
Vol 6 (3) ◽  
pp. 665-679
Author(s):  
Tomomichi NAKAMURA ◽  
Hiroshi HARUGUCHI ◽  
Hironobu KONDOU

Sign in / Sign up

Export Citation Format

Share Document