Calculation and Measurement of Kinetics Parameters of Tehran Research Reactor

Author(s):  
Seyed Abolfazl Hosseini ◽  
Naser Vosoughi ◽  
Mortaza Gharib ◽  
Mohammad Bagher Ghofrani

Effective delayed neutron fraction βeff and neutron generation time Λ are important factors in reactor physics calculation and transient analysis. In first stage of this research, these kinetics parameters have been calculated for two states of Tehran research reactor (TRR), i.e. cold (fuel, clad and coolant temperature 20°C) and hot (fuel, clad and coolant temperature 65, 49 and 44°C, respectively) using MTR_PC code. In second stage, these parameters have been measured with experimental method based on Inhour equation. For cold state, calculated βeff and Λ by MTR_PC are 0.008315 and 30.190 μsec, respectively. Same parameters in hot state are 0.008303 and 33.828 μsec, respectively. The measured βeff and Λ for cold state (reactor power is range of 100–200 Watt) are 0.008088 and 32.001 μsec, respectively. The calculated and measured values are in good agreement. Relative errors are % 2.8 for βeff and % 5.6 for Λ which are smaller than the other reported results.

Author(s):  
Seyed Abolfazl Hosseini ◽  
Naser Vosoughi

In this research, effective delayed neutron fraction (βeff) and neutron generation time (Λ) of the Tehran Research Reactor (TRR) are calculated for different uranium enrichments from 14.84 w/o to 96.56 w/o U235 in two states of the TRR, (cold fuel, clad and coolant temperature of 20 °C; and hot fuel, clad and coolant temperature of 65, 49 and 44 °C, respectively) using the MTR_PC computer code. Comparative analysis shows that both βeff and Λ increase as fuel enrichment decreases. However, variation rate of βeff is not the same in two conditions. βeff in the hot state is larger than those calculated in the cold state when fuel enrichment goes more than 83.91%, while the situation is reverse for enrichment less than that. The obtained neutron generation time shows normal behavior for all different fuel enrichments. The variables involved in kinetics parameters calculations (i.e., neutron fission cross section, fuel enrichment, etc.) are investigated theoretically to confirm the results of calculations in cold and hot states. Variations of βeff and Λ with fuel burnup are studied too.


2013 ◽  
Vol 28 (1) ◽  
pp. 18-24
Author(s):  
Sayedeh Mirmohammadi ◽  
Morteza Gharib ◽  
Parnian Ebrahimzadeh ◽  
Reza Amrollahi

A hot water layer system (HWLS) is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.


2011 ◽  
Vol 38 (12) ◽  
pp. 2667-2672 ◽  
Author(s):  
Hamid Reza Armozd ◽  
Morteza Gharib ◽  
Hossein Afarideh ◽  
Mitra Ghergherehchi ◽  
Azim Ahmadi Niar ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 65-73
Author(s):  
Nicolas Leclaire ◽  
Isabelle Duhamel

The MORET 5 code, which has been developed over more than 50 years at IRSN, has recently evolved, in its continuous energy version, from a criticality oriented code to a code also focused on reactor physics applications. Some developments such as the implementation of kinetics parameters contribute to that evolution. The aim of the paper is to present the validation of the code for the keff multiplication factor used in criticality studies as well as for other parameters commonly used in reactor physics applications. Special attention will be paid on commission tests performed in the CABRI French Reactor (CABRI is a pool-type research reactor operated by CEA and located in the Cadarache site in southern France used to simulate a sudden and instantaneous increase in power, known as a power transient, typical of a reactivity-initiated accident (RIA).) and the IPEN/MB-01 LCT-077 benchmark.


2014 ◽  
Vol 4 (1) ◽  
pp. 10-25
Author(s):  
Ba Vien Luong ◽  
Vinh Vinh Le ◽  
Ton Nghiem Huynh ◽  
Kien Cuong Nguyen

The paper presents calculated results of neutronics, steady state thermal hydraulics and transient/accidents analyses for full core conversion from High Enriched Uranium (HEU) to Low Enriched Uranium (LEU) of the Dalat Nuclear Research Reactor (DNRR). In this work, the characteristics of working core using 92 LEU fuel assemblies and 12 beryllium rods were investigated by using many computer codes including MCNP, REBUS, VARI3D for neutronics, PLTEMP3.8 for steady state thermal hydraulics, RELAP/MOD3.2 for transient analyses and ORIGEN, MACCS2 for maximum  hypothetical accident (MHA). Moreover, in neutronics calculation, neutron flux, power distribution, peaking factor, burn up distribution, feedback reactivity coefficients and kinetics parameters of the working core were calculated. In addition, cladding temperature, coolant temperature and ONB margin were estimated in steady state thermal hydraulics investigation. The working core was also analyzed under initiating events of uncontrolled withdrawal of a control rod, cooling pump failure, earthquake and MHA. Obtained results show that DNRR loaded with LEU fuel has all safety features as HEU and mixed HEU-LEU fuel cores and meets requirements in utilization as well.


2016 ◽  
Vol 58 (9) ◽  
pp. 763-766 ◽  
Author(s):  
Mohammad Hosein Choopan Dastjerdi ◽  
Hossein Khalafi ◽  
Yaser Kasesaz ◽  
Amir Movafeghi

Author(s):  
Nicholas J. Wheeler

This chapter examines the attempts by the first Obama Administration to reach out to Iran in an effort to build trust. It traces the failure of Obama’s diplomatic efforts to secure any reciprocation from Iranian leaders. The lack of reciprocation shows the problem of accurate signal interpretation when there is no trust. It focuses on the negotiations in 2009–10 over limiting Iran’s supply of nuclear fuel in return for refuelling the Tehran Research Reactor. The chapter argues these negotiations failed because of the lack of trust. What makes this case so important is that there was no face-to-face interaction, which this book argues is critical to the development of interpersonal trust and accurate signal interpretation.


Sign in / Sign up

Export Citation Format

Share Document