instantaneous increase
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 2)

Acoustics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 364-390
Author(s):  
Steven Cooper

The operation of a wind turbine results in a series of pulses where there is a significant instantaneous increase in the amplitude of the pressure signal, dependent upon the wind speed at the turbine blades. The variations in the amplitude of the sound being emitted can be significant at receiver locations both as an audible and inaudible sound. The modulation of the A-weighted amplitude of the acoustic signature for wind turbines is often referred to as “amplitude modulation”. Criteria have been proposed in the UK to define “excessive amplitude modulation”. In a technical sense, the general descriptor for wind turbine amplitude modulation is incorrect. The correct term for the variation of the A-weighted level is modulation of the amplitude. The rate of the modulation of the dB(A) level occurs at the blade pass frequency, which is in the infrasound region. Turbines can exhibit amplitude modulation in the low frequency region. The differences between amplitude modulation and modulation of the amplitude occurring at an infrasound rate are discussed in the context for an environmental assessment of a wind farm with respect to permit conditions and a simplified method of assessment with respect to the Modulation Index.


2021 ◽  
Vol 2 (1) ◽  
pp. 65-73
Author(s):  
Nicolas Leclaire ◽  
Isabelle Duhamel

The MORET 5 code, which has been developed over more than 50 years at IRSN, has recently evolved, in its continuous energy version, from a criticality oriented code to a code also focused on reactor physics applications. Some developments such as the implementation of kinetics parameters contribute to that evolution. The aim of the paper is to present the validation of the code for the keff multiplication factor used in criticality studies as well as for other parameters commonly used in reactor physics applications. Special attention will be paid on commission tests performed in the CABRI French Reactor (CABRI is a pool-type research reactor operated by CEA and located in the Cadarache site in southern France used to simulate a sudden and instantaneous increase in power, known as a power transient, typical of a reactivity-initiated accident (RIA).) and the IPEN/MB-01 LCT-077 benchmark.


2020 ◽  
Author(s):  
Jiejie Cai ◽  
Yingru Lu ◽  
Xiaorong Wang ◽  
Yincai Ye ◽  
Songzan Qian ◽  
...  

Abstract BackgroundThe function of Extracorporeal membrane oxygenation (ECMO) is to maintain cardiopulmonary function in critical patients diagnosed with Coronavirus (COVID-19). Under the protection of ECMO, we recorded and analyzed the results of ventilator treatment following the adjustment of ventilator settings.MethodsThis retrospective study enrolled six patients who received ECMO treatment. Clinical, laboratory and radiological characteristics, time of spontaneous respiration, and static lung compliance (CLst) were all recorded. Positive end-expiratory pressure (PEEP) and oxygen concentration (FIO2) were adjusted to record changes in oxygen saturation (SpO2), tidal volume (TV), peak airway pressure, and blood gas analysis. ResultsDuring analysis, one patient died of COVID-19 within 28 days, and two patients were successfully weaned off mechanical ventilation and ECMO. Patients with an improved condition have a longer time of spontaneous respiration and better CLst than those who worsen. With an instantaneous increase in FIO2 alone or a combination of PEEP / FIO2, SpO2 and partial pressure of oxygen (PaO2) both increased, but no significant change was observed in PaCO2, PaO2/FIO2 and TV. With an instantaneous increase of PEEP alone, SpO2 , PaO2, PaCO2, PaO2/FIO2 and TV showed no significant change. ConclusionsECMO can save some patients’ lives, but some patients will still suffer multiple organ failure and even death. The time of spontaneous respiration, CLst and TV may be a good choice for evaluating patients' lung situations. Increased PEEP may not significantly reduce lung exudation in COVID-19 patients supported by ECMO but further expand the over-expanded alveoli.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 374 ◽  
Author(s):  
Inka Dressler ◽  
Niklas Freund ◽  
Dirk Lowke

Recently, the progress in 3D concrete printing has developed enormously. However, for the techniques available, there is still a severe lack of knowledge of the functional interaction of processing technology, concrete rheology and admixture usage. For shotcrete 3D printing technology, we present the effect of accelerator dosages (0%, 2%, 4% and 6%) on fresh concrete properties and on interlayer strength. Therefore, early yield stress development up to 90 min is measured with penetration resistance measurements. Deformation of layers under loading is investigated with digital image correlation and a mechanical testing machine. One point in time (10 min after deposition) is examined to quantify vertical buildability of elements depending on the accelerator dosage. Four different interlayer times (0, 2, 5 and 30 min), which occur for the production of small and large elements as well as due to delay during production, are investigated mechanically as well as quantitatively with computed tomography regarding the formation of cold joints. With increased accelerator dosage, an instantaneous increase in early age yield stress and yield stress evolution was observed. An increase in interlayer time leads to a reduced strength. This is mainly attributed to the observed reduced mechanical interlocking effect of the strands. Finally, a model to describe interlayer quality is presented. In the end, advantages as well as limitations of the findings are discussed.


2019 ◽  
Vol 29 (4) ◽  
pp. 543-557 ◽  
Author(s):  
Yi Wang ◽  
Lei Cao ◽  
Yanqiu Huang ◽  
Yingxue Cao

Lateral exhaust systems have commonly been applied to capture polluted buoyant jets in many industrial processes, such as casting and metallurgy. Compared with the normal conditions of design manuals, the capture efficiency of a lateral exhaust hood (LEH) is often weakened by two factors in actual processes: the unsteady buoyant jet released from the operating surface, and the plume formed above a high-temperature workpiece placed between the LEH and the operating surface. In this study, through experiments and numerical simulations, a pulsatile phenomenon was found in the velocity and concentration distribution of the unsteady buoyant jet. Results show that the contaminate escape ratio is pulsatile; it rises with the instantaneous increase in the buoyant jet velocity and gradually decreases to a constant value. This study not only reveals the air distribution of pulsating buoyant jet but also analyses the effect of the pulsating buoyant jet and high-temperature plume on lateral ventilation system capture efficiency and provides a possible guidance for future design of new building ventilation technologies.


2019 ◽  
Vol 868 ◽  
Author(s):  
John Craske ◽  
Graham O. Hughes

We determine the smallest instantaneous increase in the strength of an opposing wind that is necessary to permanently reverse the forward displacement flow that is driven by a two-layer thermal stratification. With an interpretation in terms of the flow’s energetics, the results clarify why the ventilation of a confined space with a stably stratified buoyancy field is less susceptible to being permanently reversed by the wind than the ventilation of a space with a uniform buoyancy field. For large opposing wind strengths we derive analytical upper and lower bounds for the system’s marginal stability, which exhibit a good agreement with the exact solution, even for modest opposing wind strengths. The work extends a previous formulation of the problem (Lishman & Woods, Build. Environ., vol. 44 (4), 2009, pp. 666–673) by accounting for the transient dynamics and energetics associated with the homogenisation of the interior, which prove to play a significant role in buffering temporal variations in the wind.


2016 ◽  
Vol 30 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Katharina M. Keiblinger ◽  
Lisa M. Bauer ◽  
Evi Deltedesco ◽  
Franz Holawe ◽  
Hans Unterfrauner ◽  
...  

Abstract Agricultural intensification, especially enhanced mechanisation of soil management, can lead to the deterioration of soil structure and to compaction. A possible amelioration strategy is the application of (structural) lime. In this study, we tested the effect of two different liming materials, ie limestone (CaCO3) and quicklime (CaO), on soil aggregate stability in a 3-month greenhouse pot experiment with three agricultural soils. The liming materials were applied in the form of pulverised additives at a rate of 2 000 kg ha−1. Our results show a significant and instantaneous increase of stable aggregates after quicklime application whereas no effects were observed for limestone. Quicklime application seems to improve aggregate stability more efficiently in soils with high clay content and cation exchange capacity. In conclusion, quicklime application may be a feasible strategy for rapid improvement of aggregate stability of fine textured agricultural soils.


2014 ◽  
Vol 34 (8) ◽  
pp. 1340-1346 ◽  
Author(s):  
Anne B Walls ◽  
Elvar M Eyjolfsson ◽  
Arne Schousboe ◽  
Ursula Sonnewald ◽  
Helle S Waagepetersen

Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little is known about the effect of lower doses of kainate on cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-13C]acetate and [1-13C]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4,5-13C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and 13C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose of kainate, whereas a higher dose is required to affect neuronal metabolism. The cerebral glycogen content was dose-dependently reduced by kainate supporting a role for glycogen during seizure activity.


Author(s):  
Yuki Tanaka ◽  
Hiroyuki Takahira

The shrinking and growth of microbubbles under pressure variations are observed with a CCD camera. The influence of gas diffusion on the stability of microbubbles covered with phospholipid layers is investigated. The microbubbles are made with acoustic liposomes encapsulating phosphate buffer solution and perfluoropropane gas. It is shown that when the ambient liquid pressure increases, the observed microbubbles shrink accompanied with the cyclic surface buckling and smoothing process. The bubble surface smoothing in the process shows that the excess phospholipid layers are removed from the surface, which results in the instantaneous bubble shrinkage. It is also shown that the smaller the initial radius is, the more the growth of microbubbles is reduced. The bubble model by Takahira and Ito, in which the dynamic surface tension and the gas permeation resistance of molecular layers are considered, is utilized to simulate the experiments. The simulation is in qualitative agreement with the experimental result except for the instantaneous bubble shrinkage. The model is improved so as to consider the instantaneous increase of surface tension. The instantaneous bubble shrinkage is simulated successfully with the improved model. The results suggest that the instantaneous increase of surface tension is caused by the shedding of the excess phospholipid layer material due to the zippering process proposed by Borden and Longo.


2008 ◽  
Vol 294 (5) ◽  
pp. C1288-C1297 ◽  
Author(s):  
George G. Rodney

Calmodulin is a ubiquitous Ca2+ binding protein that binds to ryanodine rectors (RyR) and is thought to modulate its activity. Here we evaluated the effects of recombinant calmodulin on the rate of occurrence and spatial properties of Ca2+ sparks as an assay of activation in saponin-permeabilized mouse myofibers. Control myofibers exhibited a time-dependent increase and subsequent decrease in spark frequency. Recombinant wild-type calmodulin prevented the time-dependent appearance of Ca2+ sparks and decreased the derived Ca2+ flux from the sarcoplasmic reticulum during a spark by ∼37%. A recombinant Ca2+-insensitive form of calmodulin resulted in an instantaneous increase in spark frequency as well as an increase in the derived Ca2+ flux by ∼24%. Endogenous calmodulin was found to primarily localize to the Z-line. Surprisingly, removal of endogenous calmodulin did not alter the time dependence of Ca2+ spark appearance. These results indicate that calmodulin may not be essential for RyR1-dependent Ca2+ release in adult mammalian skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document