Comparison of Existing Supercritical Carbon Dioxide Heat Transfer Correlations for Horizontal and Vertical Bare Tubes

Author(s):  
Prabu Surendran ◽  
Sahil Gupta ◽  
Tiberiu Preda ◽  
Igor Pioro

This paper presents a thorough analysis of ability of various heat transfer correlations to predict wall temperatures and Heat Transfer Coefficients (HTCs) against experiments on internal forced-convective heat transfer to supercritical carbon dioxide conducted by Koppel [1], He [2], Kim [3] and Bae [4]. It should be noted the Koppel dataset was taken from a paper which used the Koppel data but was not written by Koppel. All experiments were completed in bare tubes with diameters from 0.948 mm to 9 mm for horizontal and vertical configurations. The datasets contain a total of 1573 wall temperature points with pressures ranging from 7.58 to 9.59 MPa, mass fluxes of 400 to 1641 kg/m2s and heat fluxes from 20 to 225 kW/m2. The main objective of the study was to compare several correlations and select the best of them in predicting HTC and wall temperature values for supercritical carbon dioxide. This study will be beneficial for analyzing heat exchangers involving supercritical carbon dioxide, and for verifying scaling parameters between CO2 and other fluids. In addition, supercritical carbon dioxide’s use as a modeling fluid is necessary as the costs of experiments are lower than supercritical water. The datasets were compiled and calculations were performed to find HTCs and wall and bulk-fluid temperatures using existing correlations. Calculated results were compared with the experimental ones. The correlations used were Mokry et al. [5], Swenson et al. [6] and a set of new correlations presented in Gutpa et al. [7]. Statistical error calculations were performed are presented in the paper.

2002 ◽  
Vol 124 (3) ◽  
pp. 413-420 ◽  
Author(s):  
S. M. Liao ◽  
T. S. Zhao

Heat transfer from supercritical carbon dioxide flowing in horizontal mini/micro circular tubes cooled at a constant temperature has been investigated experimentally. Six stainless steel circular tubes having inside-diameters of 0.50 mm, 0.70 mm, 1.10 mm, 1.40 mm, 1.55 mm, and 2.16 mm were tested. Measurements were carried out for the pressures ranging from 74 to 120 bar, the temperatures ranging from 20 to 110°C, and the mass flow rates ranging from 0.02 to 0.2 kg/min. It is found that the buoyancy effect was still significant, although supercritical CO2 was in forced motion through the horizontal tubes at Reynolds numbers up to 105. The experimental results also indicate that the existing correlations developed in the previous studies for large tubes deviate significantly from the experimental data for the present mini/micro tubes. Based on the experimental data, a correlation was developed for the axially averaged Nusselt number in terms of appropriate dimensionless parameters for forced convection of supercritical carbon dioxide in horizontal mini/micro tubes cooled at a constant temperature.


Author(s):  
Sahil Gupta ◽  
Donald McGillivray ◽  
Prabu Surendran ◽  
Liliana Trevani ◽  
Igor Pioro

This paper presents an analysis of three new heat-transfer correlations developed for supercritical carbon dioxide (CO2) flowing in vertical bare tubes. A large set of experimental data was obtained at Chalk River Laboratories (CRL) AECL. Heat-transfer tests were performed in upward flow of CO2 inside 8-mm ID vertical Inconel-600 tube with a 2.208-m heated length. Data points were collected at outlet pressures ranging from 7.4 to 8.8 MPa, mass fluxes from 900 to 3000 kg/m2s, inlet fluid temperatures from 20 to 40°C, and heat fluxes from 15 to 615 kW/m2; and for several combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudocritical temperature. The objective of the present experimental research is to obtain reference dataset on heat transfer in supercritical CO2 and improve our fundamental knowledge of the heat-transfer processes and handling of supercritical fluids. In general, heat-transfer process to a supercritical fluid is difficult to model, especially, when a fluid passes through the pseudocritical region, as there are very rapid variations in thermophysical properties of the fluid. Thus, it is important to investigate supercritical-fluid behaviour within these conditions. In general, supercritical carbon dioxide was and is used as a modelling fluid instead of supercritical water due to its lower critical parameters compared to those of water. Also, supercritical carbon dioxide is proposed to be used as a working fluid in the Brayton gas-turbine cycle as a secondary power cycle for some of the Generation-IV nuclear-reactor concepts such as a Sodium-cooled Fast Reactor (SFR), Lead-cooled Fast Reactor (LFR) and Molten-Salt-cooled Reactor (MSR). In addition, supercritical carbon dioxide was proposed to be used in advanced air-conditioning and geothermal systems. Previous studies have shown that existing correlations deviate significantly from experimental Heat Transfer Coefficient (HTC) values, especially, within the pseudocritical range. Moreover, the majority of correlations were mainly developed for supercritical water, and our latest results indicate that they cannot be directly applied to supercritical CO2 with the same accuracy as for water. Therefore, new empirical correlations to predict HTC values were developed based on the supercritical CO2 dataset. These correlations calculate HTC values with an accuracy of ±30% (wall temperatures with accuracy of ±20%) for the analyzed dataset.


Author(s):  
Majid Bazargan ◽  
Mahdi Mohseni

A two-dimensional model is developed to simultaneously solve the momentum and energy equations and thus predict convection heat transfer to an upward flow of supercritical carbon dioxide in a round tube. The effect of the turbulent Prandtl number, Prt, on heat transfer coefficients has been extensively studied. A number of constant values of Prt, as well as a number of suggested equations accounting for variations of Prt with flow conditions, have been examined. The investigation has been carried out for both regimes of enhanced and deteriorated heat transfer. The results of this study show that the increase of Prt, even in the viscous sublayer, cause the heat transfer coefficients to decrease. The models of Prt leading to best agreement with experiments in either regimes of heat transfer were recognized. From the effect Prt has on heat transfer coefficients, it has been deduced that the buoyancy effects in upward flow of a supercritical fluid causes the Prt to decrease and hence the heat transfer coefficients to increase.


Author(s):  
Eugene Saltanov ◽  
Igor Pioro ◽  
David Mann ◽  
Sahil Gupta ◽  
Sarah Mokry ◽  
...  

The appropriate description of heat-transfer to coolants at supercritical state is limited by the current understanding. Thus, poses one of the main challenges in development of supercritical-fluids applications for the Generation–IV reactors. The objective of the paper is, therefore, to discuss the basis for comparison of relatively recent experimental data on supercritical carbon dioxide (CO2) obtained at facilities of the Korea Atomic Energy Research Institute (KAERI) and Chalk River Laboratories (CRL) of Atomic Energy of Canada Limited (AECL). Based on the available instrumental error, a thorough analysis of experimental errors in wall- and bulk-fluid temperatures, and heat transfer coefficient is conducted. It is shown that rarely published data on instrumental errors tend to underpredict significantly actual experimental errors. A revised heat-transfer correlation for the CRL data is presented. A preliminary heat-transfer correlation for joint CRL and KAERI datasets is developed.


Sign in / Sign up

Export Citation Format

Share Document