The Use of Experimental Design for the Shrink-Fit Assembly of Multi-Ring Flywheel

Author(s):  
Yujin Wang ◽  
DeZhong Wang ◽  
Junlian Yin ◽  
Yaoyu Hu

The flywheel of latest coolant pump provides high inertia to ensure a slow decrease in coolant flow to prevent fuel damage after the loss of power. Flywheel comprises a hub, twelve tungsten alloy blocks and a retainer ring shrink-fit assembled on the outer surface of blocks. In the structural integrity analysis, the shrinkage load due to shrink-fit and the centrifugal load due to rotation are considered, so the wall thickness of retainer ring and the magnitude of shrink-fit are key variables. In particular, these variables will change the flywheel running state. This paper considers the influence of these variables, we employ Latin hypercube design to obtain the response surface model and analyze the influence of these variables. Finally we obtain the magnitude of wall thickness of retainer ring and the range of shrink-fit.

2018 ◽  
Vol 42 (4) ◽  
pp. 792-804 ◽  
Author(s):  
Mohamed Ali Bouaziz ◽  
Mohamed Amine Guidara ◽  
Christian Schmitt ◽  
Ezzeddine Hadj-Taïeb ◽  
Zitouni Azari ◽  
...  

Author(s):  
Carlos Alexandre de Jesus Miranda ◽  
Miguel Mattar Neto

A fundamental step in tube plugging management of a Steam Generator (SG), in a Nuclear Power Plant (NPP), is the tube structural integrity evaluation. The degradation of SG tubes may be considered one of the most serious problems found in PWRs operation, mainly when the tube material is the Inconel 600. The first repair criterion was based on the degradation mode where a uniform tube wall thickness corrosion thinning occurred. Thus, a requirement of a maximum depth of 40% of the tube wall thickness was imposed for any type of tube damage. A new approach considers different defects arising from different degradation modes, which comes from the in-service inspections (NDE) and how to consider the involved uncertainties. It is based on experimental results, using statistics to consider the involved uncertainties, to assess structural limits of PWR SG tubes. In any case, the obtained results, critical defect dimensions, are within the regulatory limits. In this paper this new approach will be discussed and it will be applied to two cases (two defects) using typical data of SG tubes of one Westinghouse NPP. The obtained results are compared with ‘historical’ approaches and some comments are addressed from the results and their comparison.


2018 ◽  
Vol 135 ◽  
pp. 228-233
Author(s):  
Songke Wang ◽  
Jean-Marc Martinez ◽  
Tyge Schioler ◽  
Olivier Tailhardat ◽  
Robin Le Barbier ◽  
...  

Author(s):  
Etienne de Rocquigny ◽  
Yoan Chevalier ◽  
Silvia Turato ◽  
Eric Meister

The structural integrity assessment of a nuclear Reactor Pressure Vessel (RPV) during accidental conditions such as loss-of-coolant accident (LOCA) is a major safety concern. Besides conventional deterministic calculations to justify as a nuclear operator the RPV integrity, Electricite´ de France (EDF) carries out probabilistic analyses. Probabilistic analyses become most interesting when some key variables, albeit conventionally taken at conservative values, can be modelled more accurately through statistical variability. In the context of low failure probabilities, this requires however a specific coupling effort between a specific probabilistic analysis method (e.g. Form-Sorm method) and the thermo-mechanical model to be reasonable in computing time. In this paper, the variability of a key variable — the mid-transient cooling temperature, tied to a climate-dependent tank — has been modelled, in some flaw configurations (axial sub-clad) for a French vessel. In a first step, a simplified analytical approach was carried out to assess its sensitivity upon the thermo-mechanical phenomena; hence, a direct coupling had to be implemented to allow a probabilistic calculation on the finite-element mechanical model, taking also into account a failure event properly defined through minimisation of the instantaneous failure margin during the transient. Comparison with the previous (indirectly-coupled) studies and the simplified analytical approach is drawn, demonstrating the interest of this new modelling effort to understand and order the sensitivity of the probability of crack initiation to the key variables. While being noticeable in the cases studied, sensitivity to the safety injection temperature variability proves to be less than the choice of the toughness model. Finally, regularity of the thermo-mechanical model is evidenced by the coupling exercise, suggesting that a modified response-surface based method could replace direct coupling for further investigation.


Author(s):  
Khalid Chaudhry ◽  
Andrei Blahoianu

While verifying the Primary Heat Transport (PHT) piping design for increased waterhammer loads due to sudden relief valve opening, it was discovered that linear piping analysis FEA program, which was relied upon extensively in the past, predicted overly conservative results. By overestimating the piping stresses, the stress results did not satisfy the ASME code, Section III, subsection NB-3652 Equation 9 limits for Level B service loading. During the course of investigation to meet ASME code limits, the licensee carried out a series of controlled actual waterhammer tests on thoroughly instrumented PHT piping and recorded the measured piping displacements. Waterhammer pressure-time histories created from these actual tests were then used as input into the standard linear piping analyses to compare analysis simulation results with the actual measured displacement data. It was observed that the analysis simulation results overestimated the piping displacement results by a large margin, i.e., by a factor of 5. A further insight into the analysis results indicated the presence of a single, the so called “killer” mode of vibration which accounted for nearly all of the PHT piping displacement response to test waterhammer loading. On a hypothetical basis, a restraint was applied in the direction of vibration of the pipe and the linear analysis was repeated. It was discovered that the simulated analytical piping response using a modified restraint had a much better match with the displacement results obtained during the actual test. From this hypothetical restraint application, it was inferred that friction between the supports and the pipe is the key ingredient which dampens the pipe oscillations and hence a lower response during the test than the linear analysis which does not consider the friction between the pipe and its guide support. This paper further investigates the contribution of structural damping, friction effects between the pipe and its supports (use of contact elements), fluid structure interactions and issues related to application of friction to carry out ‘modified’ nonstandard analyses to better predict the piping response to waterhammer transient loading.


Author(s):  
Amy J. Smith ◽  
Keshab K. Dwivedy

The management of flow assisted corrosion (FAC) has been a part of the maintenance of piping in nuclear power plants for more than 15 years. Programs have been set up to identify vulnerable locations, perform inspections, characterize the degraded configurations, and evaluate the structural integrity of the degraded sections. The section of the pipe is repaired or replaced if the structural integrity cannot be established for the projected degraded section at the next outage. During the past 15 years, significant improvements have been made to every aspect of the program including structural integrity evaluation. Simplified methods and rules are established in ASME Section XI code and in several code cases for verifying structural integrity. The evaluation of structural integrity is performed during the plant outage prior to a decision for repair or replacement. Any improvement in structural integrity evaluation to extend the life of a component by one additional operating cycle can help in performance of repair/replacement of component in a planned manner. Simplified methods and rules provided in the code can be easily used for analysis of pipe sections with degraded area with uniform wall thickness and for non-uniformly degraded sections, provided the degraded portions are modeled with uniform wall thickness equal to the lowest thickness of the section. The representation of a non-uniformly degraded section in this manner is necessarily conservative. The purpose of this paper is to develop methodology to analyze the non-uniformly degraded sections subjected to pressure and moment loading by modeling it in a manner that accounts for the non-uniform cross-section. The formulation developed here is more realistic than the code methodology and is still conservative. The results are presented in form of charts comparing the limit moment capacity of the degraded sections calculated by the formulation in this paper with that using ASME code formulation. The paper concludes that the proposed formulation can be used to supplement the ASME Code method to extend the remaining life of FAC degraded components.


2019 ◽  
Vol 97 ◽  
pp. 91-102 ◽  
Author(s):  
Elder Soares ◽  
Vivianne Marie Bruère ◽  
Silvana M.B. Afonso ◽  
Ramiro B. Willmersdorf ◽  
Paulo R.M. Lyra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document