Numerical Simulation of Flow Regime Transition From Slug to Wavy Flow in Helically Coiled Tubes

Author(s):  
Zhaoxu Li ◽  
Hongye Zhu

Two-phase flow in helically coiled tubes is becoming the interest of many investigators because of its importance in various applications, such as nuclear engineering, chemical engineering, refrigerating engineering and power engineering. Compared with U-type tubes used in pressurized water reactor (PWR), helically coiled tubes have advantages in size, heat transfer capacity, thermal stress toleration and two-phase stability. Accordingly the helically coiled tubes have been utilized in the steam generators of the next general reactors, such as gas-cooled reactor, fast breeder reactor and integrated pressurized water reactor. In helically coiled tubes the characteristics of momentum and heat transfer are distinct from those in straight tubes due to the presence of centrifugal force, especially for two-phase flow. Meanwhile, the transitions of flow regime, which is the crucial knowledge for the designers to determine the heat transfer rates and flow resistance, are also significantly affected by the centrifugal force. In this study, two-phase flow regimes in helically coiled tubes are investigated. Computational fluid dynamics (CFD), using fractional volume of fluid (VOF) model, is carried out to simulate wavy and slug flow regimes in helically coiled tubes. The corresponding experiment is also conducted to visualize these flow regimes at different superficial flow velocities. Numerical simulation results actually reflect the influence of centrifugal force on the two-phase flow and show a good agreement with the photographs captured from the experiment. Based on the simulations at different superficial flow velocities, the boundary between the slug and wavy flow regimes is predicted, in addition, compared with that in inclined tubes. The comparison indicates that centrifugal force could induce the appearance of wavy flows in advance and prompt the transition from slug flow to wavy flow.

Author(s):  
Jong Chull Jo ◽  
Woong Sik Kim ◽  
Chang-Yong Choi ◽  
Yong Kab Lee

This paper addresses the numerical simulation of two phase flow heat transfer in the helically coiled tubes of an integral type pressurized water reactor steam generator under normal operation using a CFD code. The single phase flow which flow downward direction in the shell side is also calculated together. For the calculation of tube side two-phase flow the inhomogeneous two-fluid model is used. Both the RPI (Rensselaer Polytechnic Institute) wall boiling model and the bulk boiling model are implemented for the numerical simulation and the computed results are compared with the available measured data. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. Both the internal and external turbulent flows are simulated using the standard k-ε model From the results of present numerical simulation, it is shown that the bulk boiling model can be applied to the simulation of two-phase flow in the helically coiled steam generator tubes. The results also show that the present simulation method is considered to be physically plausible when the computed results are compared with available previous experimental and numerical studies.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Jong Chull Jo ◽  
Woong Sik Kim ◽  
Chang-Yong Choi ◽  
Yong Kab Lee

This paper addresses the numerical simulation of two-phase flow heat transfer in the helically coiled tubes of an integral type pressurized water reactor steam generator under normal operation using a computational fluid dynamics code. The shell-side flow field where a single-phase fluid flows in the downward direction is also calculated in conjunction with the tube-side two-phase flow characteristics. For the calculation of tube-side two-phase flow, the inhomogeneous two-fluid model is used. Both the Rensselaer Polytechnic Institute wall boiling model and the bulk boiling model are implemented for the numerical simulations of boiling-induced two-phase flow in a vertical straight pipe and channel, and the computed results are compared with the available measured data. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. Both the internal and external turbulent flows are simulated using the standard k-ε model. From the results of the present numerical simulation, it is shown that the bulk boiling model can be applied to the simulation of two-phase flow in the helically coiled steam generator tubes. In addition, the present simulation method is considered to be physically plausible in the light of discussions on the computed results.


Sign in / Sign up

Export Citation Format

Share Document