The Application of an Integrated Head Assembly for Advanced Power Reactor 1400

Author(s):  
Tae Kyo Kang ◽  
Won Ho Jo ◽  
Yeon Ho Cho ◽  
Sang Gyoon Chang ◽  
Dae Hee Lee

The reactor vessel head region consists of a number of components and systems including reactor vessel head, CEDMs with their cables, cooling air system with ducts and fans, missile shield, seismic supports, head lift rig and cable supports. Prior to refueling operation, those components must be dismantled separately, and moved to the designated storage area. It was a very complicated and time consuming process. As a result, the integrated head assembly (IHA) was introduced to simplify those disassembling procedures, reduce refueling outage period, and improve safety in the containment building as those components are combined into a single system. To reduce refueling outage duration and radiation exposures to the workers by integrating the complicated reactor head region structures, KEPCO E&C has developed the IHA concept in the Korean Next Generation Reactor (KNGR) project [1]. The first application was implemented for the Optimized Power Reactor 1000 (OPR1000) at Shin-Kori units 1&2 and Shin-Wolsong units 1&2. With the past experience, the IHA was upgraded to be applied to the Advanced Power Reactor 1400 (APR1400). The design was patented in Korea [2], China, EU and the USA as modular reactor head area assembly. The IHA was applied for APR1400 nuclear power plants at Shin-Kori and Shin-Hanul, Korea. The design was also supplied to Barakah Nuclear Power Plants in the United Arab Emirates. This paper presents the design features and a variety of analysis which have been used for the APR1400 IHA.

Author(s):  
William C. Castillo ◽  
Joseph M. Remic ◽  
George J. Demetri ◽  
Frank J. Marx ◽  
David H. Roarty

Nuclear power plants need to safely and efficiently remove their reactor vessel closure head assembly during plant outages. This is accomplished by lifting the closure head assembly out of the reactor vessel cavity and placing it on the closure head stand. In order for nuclear power plants to remove their closure head assembly, the United States Nuclear Regulatory Commission has mandated that nuclear power plants upgrade to a single failure-proof crane, show single failure-proof crane equivalence, or perform a head drop analysis [1]. The goal of head drop analyses is to qualify the maximum drop height in air per plant procedures. A significant percentage (greater than 30%) of the closure head assembly’s mass is comprised of components attached to the top of the head (such as: lifting fixtures, a missile shield, air cooling systems, and control rod drive housings). The analytical consideration of large deflection, plastic deformation, and local failure of these components can potentially change the energy imparted to the vessel during impact due to their energy-absorbing capacities during the drop event. This paper contains a sensitivity study to determine the benefits of modeling closure head assembly components, using nonlinear structural behavior. The guidelines of Nuclear Energy Institute Initiative NEI 08-05 [2] are followed for this study.


2010 ◽  
pp. 50-56 ◽  
Author(s):  
Pablo T. León ◽  
Loreto Cuesta ◽  
Eduardo Serra ◽  
Luis Yagüe

2021 ◽  
Vol 30 (5) ◽  
pp. 66-75
Author(s):  
S. A. Titov ◽  
N. M. Barbin ◽  
A. M. Kobelev

Introduction. The article provides a system and statistical analysis of emergency situations associated with fires at nuclear power plants (NPPs) in various countries of the world for the period from 1955 to 2019. The countries, where fires occurred at nuclear power plants, were identified (the USA, Great Britain, Switzerland, the USSR, Germany, Spain, Japan, Russia, India and France). Facilities, exposed to fires, are identified; causes of fires are indicated. The types of reactors where accidents and incidents, accompanied by large fires, have been determined.The analysis of major emergency situations at nuclear power plants accompanied by large fires. During the period from 1955 to 2019, 27 large fires were registered at nuclear power plants in 10 countries. The largest number of major fires was registered in 1984 (three fires), all of them occurred in the USSR. Most frequently, emergency situations occurred at transformers and cable channels — 40 %, nuclear reactor core — 15 %, reactor turbine — 11 %, reactor vessel — 7 %, steam pipeline systems, cooling towers — 7 %. The main causes of fires were technical malfunctions — 33 %, fires caused by the personnel — 30 %, fires due to short circuits — 18 %, due to natural disasters (natural conditions) — 15 % and unknown reasons — 4 %. A greater number of fires were registered at RBMK — 6, VVER — 5, BWR — 3, and PWR — 3 reactors.Conclusions. Having analyzed accidents, involving large fires at nuclear power plants during the period from 1955 to 2019, we come to the conclusion that the largest number of large fires was registered in the USSR. Nonetheless, to ensure safety at all stages of the life cycle of a nuclear power plant, it is necessary to apply such measures that would prevent the occurrence of severe fires and ensure the protection of personnel and the general public from the effects of a radiation accident.


2020 ◽  
Vol 15 (28) ◽  
pp. 344-375
Author(s):  
Anita Paulovics

This paper is about the legal regulation of the extension of the operation time of nuclear power plants.  In Hungary the most important document in this respect has been the National Energy Strategy analyzed in the paper. In Hungary, the legal regulation of the extension of the time limit of the operation-permit of nuclear power plants is modelled on that of the United States. For this reason, the paper examines the rules in force in the USA on the extension of the operation time.  It could be of interest for several European countries considering to extend the operation time of their nuclear power plants.


Author(s):  
Ki Sig Kang

Utilities are looking for ways to optimize plant lifetime, and must therefore prevent stress corrosion in primary components, while combating other phenomena, such as thermal fatigue or certain metallurgical weaknesses. The replacement of sections of the main primary system is one way of solving these problems. The increase in the number of the replacement of heavy components carried out in the reactor building on specific reactor geometries has called for major technical innovations on the replacement of heavy components. For above, the IAEA published a nuclear energy series (NES) on replacement of heavy components to propose guidance and share experiences. The major and heavy components to be considered are; 1) Steam generators for pressurized water reactor plants, 2) Reactor vessel head for PWR plants, 3) Reactor internal components for boiling water reactor plants, 4) Reactor vessel internals for PWR plants, 5) Pressurizer for PWR plants, 6) Reactor coolant piping/ recirculation piping PWR, and 7) Press Tube and feed piping for pressurized heavy water reactor. This paper is focused on heavy components replacement considered strategic aspects for nuclear power plants life management.


2013 ◽  
Vol 76 (14) ◽  
pp. 1688-1699
Author(s):  
Yu. A. Zvonaryov ◽  
M. A. Budaev ◽  
A. M. Volchek ◽  
V. A. Gorbaev ◽  
V. N. Zagryazkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document