Reactor Vessel Closure Head Drop Analysis: Sensitivity Study on the Effects of Representing Nonlinear Behavior in the Closure Head Assembly

Author(s):  
William C. Castillo ◽  
Joseph M. Remic ◽  
George J. Demetri ◽  
Frank J. Marx ◽  
David H. Roarty

Nuclear power plants need to safely and efficiently remove their reactor vessel closure head assembly during plant outages. This is accomplished by lifting the closure head assembly out of the reactor vessel cavity and placing it on the closure head stand. In order for nuclear power plants to remove their closure head assembly, the United States Nuclear Regulatory Commission has mandated that nuclear power plants upgrade to a single failure-proof crane, show single failure-proof crane equivalence, or perform a head drop analysis [1]. The goal of head drop analyses is to qualify the maximum drop height in air per plant procedures. A significant percentage (greater than 30%) of the closure head assembly’s mass is comprised of components attached to the top of the head (such as: lifting fixtures, a missile shield, air cooling systems, and control rod drive housings). The analytical consideration of large deflection, plastic deformation, and local failure of these components can potentially change the energy imparted to the vessel during impact due to their energy-absorbing capacities during the drop event. This paper contains a sensitivity study to determine the benefits of modeling closure head assembly components, using nonlinear structural behavior. The guidelines of Nuclear Energy Institute Initiative NEI 08-05 [2] are followed for this study.

Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


Author(s):  
Eugene Imbro ◽  
Thomas G. Scarbrough

The U.S. Nuclear Regulatory Commission (NRC) has established an initiative to risk-inform the requirements in Title 10 of the Code of Federal Regulations (10 CFR) for the regulatory treatment of structures, systems, and components (SSCs) used in commercial nuclear power plants. As discussed in several Commission papers (e.g., SECY-99-256 and SECY-00-0194), Option 2 of this initiative involves categorizing plant SSCs based on their safety significance, and specifying treatment that would provide an appropriate level of confidence in the capability of those SSCs to perform their design functions in accordance with their risk categorization. The NRC has initiated a rulemaking effort to allow licensees of nuclear power plants in the United States to implement the Option 2 approach in lieu of the “special treatment requirements” of the NRC regulations. In a proof-of-concept effort, the NRC recently granted exemptions from the special treatment requirements for safety-related SSCs categorized as having low risk significance by the licensee of the South Texas Project (STP) Units 1 and 2 nuclear power plant, based on a review of the licensee’s high-level objectives of the planned treatment for safety-related and high-risk nonsafety-related SSCs. This paper discusses the NRC staff’s views regarding the treatment of SSCs at STP described by the licensee in its updated Final Safety Analysis Report (FSAR) in support of the exemption request, and provides the status of rulemaking that would incorporate risk insights into the treatment of SSCs at nuclear power plants.


Author(s):  
Tae Kyo Kang ◽  
Won Ho Jo ◽  
Yeon Ho Cho ◽  
Sang Gyoon Chang ◽  
Dae Hee Lee

The reactor vessel head region consists of a number of components and systems including reactor vessel head, CEDMs with their cables, cooling air system with ducts and fans, missile shield, seismic supports, head lift rig and cable supports. Prior to refueling operation, those components must be dismantled separately, and moved to the designated storage area. It was a very complicated and time consuming process. As a result, the integrated head assembly (IHA) was introduced to simplify those disassembling procedures, reduce refueling outage period, and improve safety in the containment building as those components are combined into a single system. To reduce refueling outage duration and radiation exposures to the workers by integrating the complicated reactor head region structures, KEPCO E&C has developed the IHA concept in the Korean Next Generation Reactor (KNGR) project [1]. The first application was implemented for the Optimized Power Reactor 1000 (OPR1000) at Shin-Kori units 1&2 and Shin-Wolsong units 1&2. With the past experience, the IHA was upgraded to be applied to the Advanced Power Reactor 1400 (APR1400). The design was patented in Korea [2], China, EU and the USA as modular reactor head area assembly. The IHA was applied for APR1400 nuclear power plants at Shin-Kori and Shin-Hanul, Korea. The design was also supplied to Barakah Nuclear Power Plants in the United Arab Emirates. This paper presents the design features and a variety of analysis which have been used for the APR1400 IHA.


Author(s):  
David Alley

This paper provides a historical perspective on the need for, and development of, buried and underground piping tanks programs at nuclear power plants. Nuclear power plant license renewal activities, Nuclear Regulatory Commission Buried Piping Action Plan, and the rationale for addressing the issue of buried pipe through an industry initiative as opposed to regulation are discussed. The paper also addresses current NRC activities including the results of Nuclear Regulatory Commission inspections of buried piping programs at nuclear power plants as well as Nuclear Regulatory Commission involvement in industry and standards development organizations. Finally, the paper outlines the Nuclear Regulatory Commission’s future plans concerning the issue of buried piping at US nuclear power plants.


Author(s):  
Ronald Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed, including more traditional evolutionary designs, passive reactor designs, and small modular reactors (SMRs). ASME (formerly the American Society of Mechanical Engineers) provides specific codes used to perform inspections and testing, both preservice and inservice, for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for design certification (DC) and combined license (COL) applications under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” of Title 10, “Energy,” of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code, Operation and Maintenance of Nuclear Power Plants, defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or after January 1, 2000. The ASME New Reactors OM Code (NROMC) Task Group (TG) is assigned the task of ensuring that the preservice testing (PST) and inservice testing (IST) provisions in the ASME OM Code are adequate to provide reasonable assurance that pumps, valves, and dynamic restraints (snubbers) for post-2000 plants will operate when needed. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in nonsafety systems for passive post-2000 plants, including SMRs. (Note: For purposes of this paper, “post-2000 plant” and “new reactor” are used interchangeably throughout.) Paper published with permission.


Author(s):  
Mansoor H. Sanwarwalla

Since the United States Nuclear Regulatory Commission (USNRC) published its landmark “Reactor Safety Study — An Assessment of Accident Risks in U. S. Commercial Nuclear Power Plants” in late 1975, commercial nuclear power industry, encouraged by the USNRC, have since then been applying Probabilistic Risk Assessment (PRAs) in their nuclear power units in areas of in-service testing, in-service inspection, quality assurance, technical specifications, maintenance, etc. To guide and regulate the industry in use of PRAs, Regulatory Guides and Standards have been written and are being revised continuously by the USNRC, American Society of Mechanical Engineers (ASME) and American Nuclear Society (ANS). The current use of PRA takes credit for single failure criterion based on applicability of codes and standards. The proposed new USNRC regulation 10 CFR Part 53 applicable for all reactor technologies is silent on the applicability of current standards endorsed by the regulatory body. The impact of the proposed new rule to both new and the current application needs to be studied. This paper will review the application of the various guidance documents for their use in commercial nuclear power plants with emphasis on the new generation nuclear power plants.


2013 ◽  
Vol 448-453 ◽  
pp. 2786-2789 ◽  
Author(s):  
Jin Li ◽  
Chu Fu Li ◽  
Yan Xia Zhang ◽  
Hui Guo Yue

Nuclear plants are facing more and more peaking pressure, and combined operation with compressed air energy storage (CAES) systems is an effective approach to improve its peaking capacity. This work first simulates and conducts the exergy analysis for the CAES system. The results show that exergy efficiency of the CAES system is about 51.7%, as well as the exergy loss are primary in the fuel combustion and compressed air cooling processes, accounted for 25.4% and 11.3% of total exergy, respectively. Subsequently, three combined operation modes between CAES system and nuclear power plants for power grid peaking are investigated, which shows that three section tracking mode and incomplete tracking mode can achieve the balance between peaking effects and peaking cost.


Author(s):  
Thomas G. Scarbrough

In a series of Commission papers, the U.S. Nuclear Regulatory Commission (NRC) described its policy for inservice testing (IST) programs to be developed and implemented at nuclear power plants licensed under 10 CFR Part 52. This paper discusses the expectations for IST programs based on those Commission policy papers as applied in the NRC staff review of combined license (COL) applications for new reactors. For example, the design and qualification of pumps, valves, and dynamic restraints through implementation of American Society of Mechanical Engineers (ASME) Standard QME-1-2007, “Qualification of Active Mechanical Equipment Used in Nuclear Power Plants,” as accepted in NRC Regulatory Guide (RG) 1.100 (Revision 3), “Seismic Qualification of Electrical and Active Mechanical Equipment and Functional Qualification of Active Mechanical Equipment for Nuclear Power Plants,” will enable IST activities to assess the operational readiness of those components to perform their intended functions. ASME has updated the Operation and Maintenance of Nuclear Power Plants (OM Code) to improve the IST provisions for pumps, valves, and dynamic restraints that are incorporated by reference in the NRC regulations with applicable conditions. In addition, lessons learned from performance experience and testing of motor-operated valves (MOVs) will be implemented as part of the IST programs together with application of those lessons learned to other power-operated valves (POVs). Licensee programs for the Regulatory Treatment of Non-Safety Systems (RTNSS) will be implemented for components in active nonsafety-related systems that are the first line of defense in new reactors that rely on passive systems to provide reactor core and containment cooling in the event of a plant transient. This paper also discusses the overlapping testing provisions specified in ASME Standard QME-1-2007; plant-specific inspections, tests, analyses, and acceptance criteria; the applicable ASME OM Code as incorporated by reference in the NRC regulations; specific license conditions; and Initial Test Programs as described in the final safety analysis report and applicable RGs. Paper published with permission.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


Sign in / Sign up

Export Citation Format

Share Document