Turbulent Natural Convection Inside a Square Enclosure With Baffles

Author(s):  
Khudheyer S. Mushatet

In this paper, the turbulent natural convection heat transfer and fluid flow inside a square enclosure having two conducting solid baffles has been numerically investigated. Fully elliptic Navier-Stockes and energy equations are disrectized using finite volume method along with a staggered grid techniques. The resulting algebraic equations were solved by using semi-implicit line by line Guase elimination scheme. The effect of turbulence was incorporated to treat the regions near the walls. The flow and thermal fields are investigated for different parameters such as the relative baffles height, Rayleigh number and the distance between baffles. The conducted results indicated that the resulting vortices are decreased in number and elongated with the decrease of the dimensionless relative baffle heights. Also the results show that the rate of heat transfer is increased with the increase of Ra especially for the region near the baffles.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
M. Goodarzi ◽  
M. R. Safaei ◽  
A. Karimipour ◽  
K. Hooman ◽  
M. Dahari ◽  
...  

Different numerical methods have been implemented to simulate internal natural convection heat transfer and also to identify the most accurate and efficient one. A laterally heated square enclosure, filled with air, was studied. A FORTRAN code based on the lattice Boltzmann method (LBM) was developed for this purpose. The finite difference method was applied to discretize the LBM equations. Furthermore, for comparison purpose, the commercially available CFD package FLUENT, which uses finite volume Method (FVM), was also used to simulate the same problem. Different discretization schemes, being the first order upwind, second order upwind, power law, and QUICK, were used with the finite volume solver where the SIMPLE and SIMPLEC algorithms linked the velocity-pressure terms. The results were also compared with existing experimental and numerical data. It was observed that the finite volume method requires less CPU usage time and yields more accurate results compared to the LBM. It has been noted that the 1st order upwind/SIMPLEC combination converges comparatively quickly with a very high accuracy especially at the boundaries. Interestingly, all variants of FVM discretization/pressure-velocity linking methods lead to almost the same number of iterations to converge but higher-order schemes ask for longer iterations.


Author(s):  
Tahar Tayebi ◽  
Ali J. Chamkha

Abstract In this paper, steady natural convective heat transfer and flow characteristics of Al2O3-Cu/water hybrid nanofluid filled square enclosure in the presence of magnetic field has been investigated numerically. The enclosure is equipped with a wavy circular conductive cylinder. The natural convection in the cavity is induced by a temperature difference between the vertical left hot wall and the other right cold wall. The steady 2-D equations of laminar natural convection problem for Newtonian and incompressible mixture are discretized using the finite volume method. The effective thermal conductivity and viscosity of the hybrid nanofluid are calculated using Corcione correlations taking into consideration the Brownian motion of the nanoparticles. A numerical parametric investigation is carried out for different values of the nanoparticles volumic concentration, Hartmann number, Rayleigh number, and the ratio of fluid to solid thermal conductivities. According to the results, the corrugated conductive block plays an important role in controlling the convective flow characteristic and the heat transfer rate within the system.


1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


Sign in / Sign up

Export Citation Format

Share Document