An Investigation of Three Dimensional Elastic-Plastic Hemispherical Sliding Contact, Part II: Results

Author(s):  
John Moody ◽  
Itzhak Green

This work presents the results from a three dimensional (3D) finite element analysis (FEA) of an elastic-plastic asperity contact model for two spherical bodies sliding across each other with various preset vertical interferences. Stresses, forces, contact areas, deformations, and net energy loss are presented for steel-on-steel and aluminum-on-copper contact.

Author(s):  
John Moody ◽  
Itzhak Green

This work presents a three dimensional (3D) finite element analysis (FEA) of an elastic-plastic hemispherical contact model for two hemispherical bodies sliding across each other with various preset vertical interferences. The boundary conditions, model simplifications, and the normalization scheme are presented. Sample results from this FEA investigation are compared to a semi-analytical solution to validate the methodology.


2014 ◽  
Vol 508 ◽  
pp. 243-248 ◽  
Author(s):  
Jun Peng Li ◽  
Xiao Li ◽  
Dong Qing Zhu

The plane finite element analysis is mostly adopted in soft rock tunnel excavation instead of three-dimensional nonlinear finite element analysis at present, but almost every underground engineering is a spatial nonlinear problem which, in many cases, cannot be simplified into a plane problem. This paper presents a three-dimensional elastic-plastic finite element analysis of incremental variable plastic in soft rock tunnel excavation, through analyzing the tunnel excavation and support, and combining the incremental variable plastic stiffness method into three-dimensional elastic-plastic model in light of the advantage of increment variable stiffness method and the incremental additional load method. Simulation results show that, the three-dimensional elastic-plastic finite element analysis model presented in this paper changes little final deformation under different load release coefficients, together with small support stress.


2015 ◽  
Vol 41 (6) ◽  
pp. 646-651 ◽  
Author(s):  
Hakimeh Siadat ◽  
Shervin Hashemzadeh ◽  
Allahyar Geramy ◽  
Seyed Hossein Bassir ◽  
Marzieh Alikhasi

There are some anatomical restrictions in which implants are not possible to be inserted in their conventional configuration. Offset placement of implants in relation to the prosthetic unit could be a treatment solution. The aim of this study was to evaluate the effect of the offset placement of implant-supported prosthesis on the stress distribution around a dental implant using 3D finite element analysis. 3D finite element models of implant placement in the position of a mandibular molar with 4 configurations (0, 0.5, 1, 1.5 mm offset) were created in order to investigate resultant stress/strain distribution. A vertical load of 100 N was applied on the center of the crown of the models. The least stress in peri-implant tissue was found in in-line configuration (0 mm offset). Stress concentration in the peri-implant tissue increased by increasing the amount of offset placement. Maximum stress concentration in all models was detected at the neck of the implant. It can be concluded that the offset placement of a single dental implant does not offer biomechanical advantages regarding reducing stress concentration over the in-line implant configuration. It is suggested that the amount of offset should be as minimum as possible.


Sign in / Sign up

Export Citation Format

Share Document