ASME/STLE 2007 International Joint Tribology Conference, Parts A and B
Latest Publications


TOTAL DOCUMENTS

302
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

0791848108, 0791838110

Author(s):  
S. Elhanafi ◽  
K. Farhang

This paper considers leakage in mechanical seals under hydrostatic operating condition. A contact model based on the Greenwood and Williamson contact of rough surfaces is developed for treating problems involving mechanical seals in which both the micron scale roughness of the seal face and its macro scale profile are used to obtain either a closed-form equation or a nonlinear equation relating mean plane separation to the mass flow rate. The equations involve the micron scale geometry of the rough surfaces and physical parameter of the seal and carriage. Under hydrostatic condition, it is shown that there is an approximate closed-form solution in which mass flow rate in terms of the mean plane separation, or alternatively, the mean plane separation in terms of the leakage mass flow rate is found. Equations pertaining to leakage in nominally flat seal macro profile is considered and closed form equation relating to leakage flow rate to pressure difference is obtained that contain macro and micron geometries of the seal.


Author(s):  
Niniza S. P. Dlamini ◽  
Iakovos Sigalas ◽  
Andreas Koursaris

Cutting tool wear of polycrystalline cubic boron nitride (PcBN) tools was investigated in oblique turning experiments when machining compacted graphite iron at high cutting speeds, with the intention of elucidating the failure mechanisms of the cutting tools and presenting an analysis of the chip formation process. Dry finish turning experiments were conducted in a CNC lathe at cutting speeds in the range of 500–800m/min, at a feed rate of 0.05mm/rev and depth of cut of 0.2mm. Two different tool end-of-life criteria were used: a maximum flank wear scar size of 0.3mm (flank wear failure criterion) or loss of cutting edge due to rapid crater wear to a point where the cutting tool cannot machine with an acceptable surface finish (surface finish criterion). At high cutting speeds, the cutting tools failed prior to reaching the flank wear failure criterion due to rapid crater wear on the rake face of the cutting tools. Chip analysis, using SEM, revealed shear localized chips, with adiabatic shear bands produced in the primary and secondary shear zones.


Author(s):  
A. Sepehri ◽  
K. Farhang

Three dimensional elastic-plastic contact of two nominally flat rough surfaces is by developing the equations governing the shoulder-shoulder contact of asperities based on the Chang, Etsion and Bogy (CEB) model of contact in which volume conservation is assumed in the plastic flow regime. Shoulder-shoulder asperity contact yields a slanted contact force consisting of both tangential (parallel to mean plane) and normal components. Each force component comprises elastic and elastic-plastic parts. Statistical summation of normal force components leads to the derivation of the normal contact force for the elastic-plastic contact akin to the CEB model. Half-plane tangential force due to elastic-plastic contact is derived through the statistical summation of tangential force component along an arbitrary tangential direction.


Author(s):  
Yan Du ◽  
George G. Adams ◽  
Nicol E. McGruer ◽  
Izhak Etsion

Three key parameters describing contacts with adhesion were identified in previous investigations. Here a series of finite element simulations of a single load/unload cycle of a contact are performed to study the impact of each of these parameters. The results show that one parameter (S) is most important in determining the separation mode, i.e. brittle or ductile separation. Smaller S leads to brittle separation while larger S gives ductile separation. The transition between the two separation modes occurs at about S = 1.2 which corresponds to the theoretical stress being somewhat greater than the hardness.


Author(s):  
Ryan D. Evans ◽  
J. David Cogdell ◽  
Gary L. Doll

Tribological thin film coatings can enhance performance in mechanical components such as bearings and gears. Although lubricant is present in most applications, the interactions of the lubricant with coated surfaces are not always well understood. In the present study, Stribeck curves (i.e., traction coefficient vs. dimensionless film thickness Λ) were generated for lubricated rolling contact between coated and uncoated surfaces. Chromium nitride, tungsten carbide reinforced amorphous hydrocarbon, and silicon-incorporated diamond-like carbon coatings are evaluated. A ball-on-flat test configuration is used in a 100% slide-to-roll condition. The test lubricant was a polyalphaolefin containing rust and oxidation inhibitor additives only. Differences in traction performance are observed for different coating types. The traction coefficient decreases at high Λ with increasing hydrocarbon content in the coating. The combination of coating micro-texture and composition are believed to influence traction as A becomes small.


Author(s):  
M. A. Kabir ◽  
C. Fred Higgs ◽  
Michael R. Lovell

Granular flow behavior is of fundamental interest to the engineering and scientific community because of the prevalence of these flows in the pharmaceutical, agricultural, food service, and powder manufacturing industries. Granular materials exhibit very complex behavior, oftentimes acting as solids and at other times as fluids. This dual nature leads to very complex and rich behavior, which is not yet well understood. Therefore, the present investigation introduces a new technique that can potentially be used to unveil the mystery of granular flow phenomena. To this end, advanced finite element modeling and simulation techniques have been applied to the study of the complex nature of granular flow. More specifically, the explicit dynamic code LS-DYNA has been utilized to gain an understanding of the complex flow nature and collision stresses of granules in a shear cell.


Author(s):  
Du Chen ◽  
David D. Bogy

A nonlinear dynamic model is developed to analyze the bouncing vibration of a partial contact air bearing slider, which is designed for the areal recording density in hard disk drives of 1 Tbit/in2 or even higher. In this model the air bearing with contact is modeled using the generalized Reynolds equation modified with the Fukui-Kaneko slip correction and a new second order slip correction for the contact situation [1]. The adhesion, contact and friction between the slider and the disk are also considered in the model. It is found that the disk surface roughness, which moves into the head disk interface (HDI) as the disk rotates, excites the bouncing vibrations of the partial contact slider. The frequency spectra of the slider’s bouncing vibration have high frequency components that correspond to the slider-disk contact.


Author(s):  
Rodrigo Nicoletti ◽  
Zilda C. Silveira ◽  
Benedito M. Purquerio

The mathematical modeling of aerostatic porous bearings, represented by the Reynolds equation, depends on the assumptions for the flow in the porous medium. One proposes a modified Reynolds equation based on the quadratic Forchheimer assumption, which can be used for both linear and quadratic conditions. Numerical results are compared to those obtained with the linear Darcy model. It is shown that, the non-dimensional parameter Φ, related to non-linear effects, strongly affects the bearing dynamic characteristics, but for values of Φ > 10, the results tend to those obtained with the linear model.


Author(s):  
Fanghui Shi

Engine designs require better fuel economy, lower NVH, and longer durability. Consequently, the understanding, analysis and design for lubricated engine components that have relative moving surfaces play an important role in this objective. As the GM corporate standard analytical tool for these components, FLARE has been under continuous improvements and validations since its first rollout from GMR in the late 80s. It has also been benchmarked with the best features available in the commercial software package and research literature. There are currently more than 20 standard work procedures directly involving FLARE as solver and its applications span over: • Rod, crank, cam and balance shaft journal bearings; • Connecting rod structure; • Piston structure and scuffing; • Engine mechanical friction; • Load calculation for engine block structural analysis; • Lube system analysis; • Noise analysis. There are three levels of analysis based on requirements. Namely, level one is used in initial design stage that finds solution by interpolating the curve-fitted equations. It requires the least information about the design and runs in seconds. In level 2, a more detailed solution can be obtained by solving mixed mass-conserving lubrication governing equations using FEM with the assumption of rigid bounding surfaces. Heat transfer can be taken into account in this level and above. Level 3 has the full capability, in addition to the features in level 2, the solution is coupled with the elasticity of surface/structure which can be obtained through offline structure FEM analysis. Higher level of analysis captures more physics but requires better understanding of the input parameters and careful interpretation of the results. The unique strength of FLARE is its detailed component level analysis capability. This presentation is an overview of the latest development on FLARE technology. It includes the physics captured in FLARE, integrated solution technique and some selected results for crankshaft bearings, floating piston pins, and piston/liner impact under partial film lubrication.


Author(s):  
D. Devaprakasam ◽  
P. V. Hatton ◽  
G. Moebus ◽  
B. J. Inkson

The objective of this work is to quantify nanomechanical and nanotribological properties of nano- and micro-particles filled polymer composites used for the dental restorative applications. Nanotribological performances of the two polymer composites with different reinforcing particulates were investigated using advanced microscopy techniques. Both the polymer composites composed of same dimethacrylate based monomeric mixture, Bisphenol-A-glycidyldimethacrylate (Bis-GMA), triethylene glycoldimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), as matrix. It was found that the elastic modulus, hardness, particle size, shape, distribution and agglomeration significantly influence the friction and wear characteristics of the polymer composites. The results show that nanotribological performance of nanoparticle reinforced polymer composites is better than the microparticle reinforced polymer composites.


Sign in / Sign up

Export Citation Format

Share Document