Characterizing and Comparing Fretting Fatigue and Pitting in Low-Amplitude Reciprocating Contact

Author(s):  
Emil Sandoz-Rosado ◽  
Elon Terrell

Fretting fatigue has consistently been described as an “insidious” fracture process due to the difficulty in modeling and predicting fretting-induced crack initiation. Components can develop fretting fatigue cracks even when they are designed for minimal relative motion, as in the case of a turbine blade root. Vibrations that are typically small enough to be considered negligible in engineering analysis can cause cracks that will lead to component failure. The sliding distance for fretting to occur is loosely defined as tens to hundreds of micrometers. To date, there has not been a good delineation between the fretting motion and gross-sliding regimes. Likewise, it is not well understood when a given component will experience fretting fatigue or pitting (which is associated with gross sliding and is often seen in gear components). Preliminary data suggest that pitting-like cracks can initiate in a hemisphere-on-flat linear reciprocating configuration at a low number of cycles (104) and fretting-sized displacements (200–300μm). Because of the differences between the mechanisms for failure in fretting and pitting, new insight must be developed to determine parameters under which to expect either failure mode. This work seeks to characterize these two forms of failure and to determine the conditions under which fretting or pitting becomes dominant to develop a new tool for the prediction and prevention of moving components.

2020 ◽  
pp. 75-86
Author(s):  
Sergio Antonio Camargo ◽  
Lauro Correa Romeiro ◽  
Carlos Alberto Mendes Moraes

The present article aimed to test changes in cooling water temperatures of males, present in aluminum injection molds, to reduce failures due to thermal fatigue. In order to carry out this work, cooling systems were studied, including their geometries, thermal gradients and the expected theoretical durability in relation to fatigue failure. The cooling system tests were developed with the aid of simulations in the ANSYS software and with fatigue calculations, using the method of Goodman. The study of the cooling system included its geometries, flow and temperature of this fluid. The results pointed to a significant increase in fatigue life of the mold component for the thermal conditions that were proposed, with a significant increase in the number of cycles, to happen failures due to thermal fatigue.


2015 ◽  
Vol 651-653 ◽  
pp. 504-509
Author(s):  
Eduardo Luis Gaertner ◽  
José Divo Bressan ◽  
Anne Karollyne Petry

The fretting is responsible for many failures of components in the industry. It is present in assemblies like rivet and screw fixture, dovetailjoint, shaft and hub with key, and all connections of two bodies with a contact force and a small induced relative displacement. Topic of studies for decades, the researchers perform experimental tests with some simplification in order to accelerate the phenomenon, some times using standard devices or creating dedicated machines for better representing the behavior of the desired components. There are a few studies with thin sheets, in which the fretting fatigue has more impact because a small reduction of the cross section due to the wear of crack results in a significant increase of stress and rate of crack propatation, decresing the number of cycles until failure. In this work, it wasbuild a device to generate the fretting fatigue with two different shape of contact pad. The specimen is a stainless steel sheet thickness 0.152mm, which fractures and surfaces were analyzed using the SEM and white light interferometer to understand the fractures.


Wear ◽  
1976 ◽  
Vol 38 (2) ◽  
pp. 311-324 ◽  
Author(s):  
K. Endo ◽  
H. Goto

2015 ◽  
Vol 87 ◽  
pp. 750-758 ◽  
Author(s):  
Zeeshan Anjum ◽  
Faisal Qayyum ◽  
Shahab Khushnood ◽  
Sagheer Ahmed ◽  
Masood Shah

Author(s):  
J. B. Jordon ◽  
M. F. Horstemeyer

A microstructure-based fatigue model is employed to predict fatigue damage in 4140 steel. Fully reversed, strain control fatigue tests were conducted at various strain amplitudes and scanning electron microscopy was employed to establish structure-property relations between the microstructure and cyclic damage. Fatigue cracks were found to initiate from particles near the free surface of the specimens. In addition, fatigue striations were found to originate from these particles and grew radially outward. The fatigue model used in this study captured the microstructural effects and mechanics of nucleation and growth observed in this ferrous metal. Good correlation of the number of cycles to failure between the experimental results and the model were achieved. Based on analysis of the mechanical testing, fractography and modeling, the fatigue life of the 4140 steel is estimated to comprise mainly of small crack growth in the low cycle regime and crack incubation in the high cycle fatigue regime.


Sign in / Sign up

Export Citation Format

Share Document