Molecular Beacons for Sensitive Gene Detection in Living Cells

Author(s):  
Andrew Tsurkas ◽  
Gang Bao

Real-time imaging of gene expression in living cells has the potential to significantly impact clinical and laboratory studies of cancer, including cancer diagnosis and analysis. Molecular beacons (MBs) provide a simple and promising tool for the detection of target mRNA as tumor markers due to their high signal-to-background ratio, and their improved specificity in detecting point mutations. However, the harsh intracellular environment does limit the sensitivity of MB-based gene detection. Specifically, MBs bound to target mRNAs cannot be distinguished from those degraded by nucleases, or opened due to non-specific interactions. To overcome this difficulty, we have developed a novel dual FRET molecular beacons approach in which a pair of molecular beacons, one with a donor fluorophore and a second with an acceptor fluorophore, hybridize to adjacent regions on the same target resulting in fluorescence resonance energy transfer (FRET). The detection of a FRET signal leads to a substantially increased signal-to-background ratio compared with that in single molecular beacon assays and enables discrimination between fluorescence due to specific probe/target hybridization and a variety of false-positive events. We have performed systematic in-solution and cellular studies of dual FRET molecular beacon and demonstrated that this new approach allows for real-time imaging of gene expression in living cells.

1998 ◽  
Vol 5 (11) ◽  
pp. R285-R290 ◽  
Author(s):  
Guy A. Rutter ◽  
Helen J. Kennedy ◽  
Christopher D. Wood ◽  
Michael R.H. White ◽  
Jeremy M. Tavaré

The Analyst ◽  
2017 ◽  
Vol 142 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Y. Ma ◽  
X. Dai ◽  
T. Hong ◽  
G. B. Munk ◽  
M. Libera

Gel-tethered molecular beacons coupled with NASBA RNA amplification enable real-time microbial detection and differentiation in a bloodstream infection model.


2000 ◽  
Vol 113 (20) ◽  
pp. 3663-3671 ◽  
Author(s):  
M. Schrader ◽  
S.J. King ◽  
T.A. Stroh ◽  
T.A. Schroer

We have directly imaged the dynamic behavior of a variety of morphologically different peroxisomal structures in HepG2 and COS-7 cells transfected with a construct encoding GFP bearing the C-terminal peroxisomal targeting signal 1. Real time imaging revealed that moving peroxisomes interacted with each other and were engaged in transient contacts, and at higher magnification, tubular peroxisomes appeared to form a peroxisomal reticulum. Local remodeling of these structures could be observed involving the formation and detachment of tubular processes that interconnected adjacent organelles. Inhibition of cytoplasmic dynein based motility by overexpression of the dynactin subunit, dynamitin (p50), inhibited the movement of peroxisomes in vivo and interfered with the reestablishment of a uniform distribution of peroxisomes after recovery from nocodazole treatment. Isolated peroxisomes moved in vitro along microtubules in the presence of a microtubule motor fraction. Our data reveal that peroxisomal behavior in vivo is significantly more dynamic and interactive than previously thought and suggest a role for the dynein/dynactin motor in peroxisome motility.


2009 ◽  
Vol 296 (3) ◽  
pp. C498-C504 ◽  
Author(s):  
Rachel Jones ◽  
Meredith B. Baker ◽  
Martina Weber ◽  
David G. Harrison ◽  
Gang Bao ◽  
...  

The endothelium plays an essential role in maintaining vascular homeostasis, and it fulfills this role by modulating intracellular signaling and gene expression in response to chemical and mechanical stimuli. Assessing changes in endothelial gene expression is essential to understanding how physiological and pathophysiological processes modulate vascular homeostasis. Here we describe the use of molecular beacons to rapidly and quantitatively assess expression and 3′-polyadenylation of a gene that is important for vascular homeostasis, endothelial nitric oxide synthase (eNOS). Single- and dual-fluorescence resonance energy transfer (FRET) molecular beacon hybridization assays were developed to measure changes in mRNA levels and 3′-polyadenylation, respectively, in primary human endothelial cell cultures subjected to laminar shear stress or statin treatment. Optimized beacon hybridization assays took ∼15 min to perform, and eNOS mRNA levels were validated by quantitative real-time RT-PCR. Competitive inhibition assays and posttranscriptional silencing of eNOS expression were used to verify the specificity of molecular beacon fluorescence. Finally, the dual-FRET method was used to assess eNOS polyadenylation in tissues isolated from mice subjected to exercise training. These data demonstrate that molecular beacons can be used to rapidly and efficiently measure endothelial gene expression and 3′-polyadenylation. This approach could easily be adapted for studies of other endothelial genes and has promise for applications in live endothelial cells.


2019 ◽  
Vol 11 (31) ◽  
pp. 27529-27535 ◽  
Author(s):  
Yang Zhang ◽  
Gengwu Zhang ◽  
Peng Yang ◽  
Basem Moosa ◽  
Niveen M. Khashab

Sign in / Sign up

Export Citation Format

Share Document