Numerical Simulation of Fluid Flow and Heat Transfer in the Micro-Nozzle

Author(s):  
Longjian Li ◽  
Yihua Zhang ◽  
Wenzhi Cui ◽  
Tien-Chien Jen ◽  
Qinghua Chen ◽  
...  

Micro-nozzle, based on the MEMS technology, has played an important role in orbit positioning, attitude adjusting and other applications of micro-satellites. The continuous no-slip model of two-dimensional compressible laminar flow in the micro-nozzle was proposed and solved numerically by finite control volume method. The flow and heat transfer in the micro-nozzle were computed under different conditions, including different inlet pressures, different inlet temperatures and different divergent angles. Flow field and effects of these conditions on the propulsion performance were analyzed. Finally, simulated solutions were compared and validated with the experimental results.

2000 ◽  
Author(s):  
B. Zheng ◽  
C. X. Lin ◽  
M. A. Ebadian

Abstract Numerical modeling was performed to investigate the buoyancy effect on developing turbulent flow and the heat transfer characteristics of saturated water in a helical pipe with finite pitch. The renormalization group (RNG) κ–ε model was used to account for the turbulent flow and heat transfer in the helical pipe at a constant wall temperature with or without buoyancy force effect. A control volume method with second-order accuracy was used to numerically solve the three-dimensional full elliptic governing equations for this problem. The O-type nonuniform structured grid system was adopted to discretize the computation domain. The Boussinesq approximation was applied to deal with the buoyancy. This study explored the influence of buoyancy on the developing heat transfer along the helical pipe. Based on the results of this research, the velocity, temperature, and Nusselt number are presented graphically and analyzed.


1988 ◽  
Vol 110 (3) ◽  
pp. 405-411 ◽  
Author(s):  
M. A. Habib ◽  
A. E. Attya ◽  
D. M. McEligot

A computational method for the calculation of the flow and heat transfer in a channel, with elements of various heights inducing a streamwise-periodic flow, is presented and evaluated. The time-averaged conservation equations of mass, momentum, and energy were solved together using a finite-control-volume method. Reynolds stresses were obtained using a two-equation model, which solves the time-averaged equations of the turbulence kinetic energy and its dissipation rate. The calculated flow field is shown to be in satisfactory agreement with the experimental data. The results indicate that the local and overall heat loss parameters increase with increasing Reynolds and Prandtl numbers and element height and with decreasing spacing.


2001 ◽  
Vol 50 (4) ◽  
pp. 349-358 ◽  
Author(s):  
George Arampatzis ◽  
Christos Tzimopoulos ◽  
Maria Sakellariou-Makrantonaki ◽  
Stavros Yannopoulos

2012 ◽  
Vol 614-615 ◽  
pp. 265-271 ◽  
Author(s):  
Si Ping Wang ◽  
Li Zhang ◽  
Jian Li

Detailed prediction of steam flow field and heat transfer process is significant for the condensers. The flow and heat transfer performance of the condenser of 600MW power unit is numerical simulated. A model of porous media with distributed resistance and mass sink is used to simulate the function of the tube bundle. The equations including the continuous, momentum and air concentration are numerically solved using the finite control-volume integration method and SIMPLE algorithm. The distribution of steam velocity, pressure, heat transfer coefficient and air concentration are obtained and analyzed. On the basis of results, the condenser is evaluated.


Sign in / Sign up

Export Citation Format

Share Document