Strategy for Integrated Use of the Industrial Waste Heat

Author(s):  
Helen Skop ◽  
Yaroslav Chudnovsky

The domestic industrial sector uses over 32 quads of energy that represents one-third of the total energy consumed annually in United States of America. Energy consumption details can be found at www.eia.doe.gov/aer/. Obviously, that the efficient use of available energy has a substantial impact on the competitiveness of domestic manufacturers as well as on the environment. Efficient conversion of raw materials into usable products and usable work/energy strictly depends on the commercially available technologies and equipment. Energy efficiency significantly varies across multiple industries and different applications but one of the major energy losses is thermal energy loss, so-called waste heat. Sources of the waste heat comprise of variety of gaseous exhausts, waste process liquids, cooling media, chemical waste and environmental losses. Over 30 years the engineering community has been trying to develop cost-effective approaches for waste heat recovery and utilization. However, so far there is no universal and cost-effective solution or approach for the industrial waste heat recovery and utilization. In this paper authors discuss an integrated strategy of the industrial waste heat use through the consideration of the closest surrounding of the waste heat source and other types of waste (chemical, mechanical, acoustical, etc.) along with most promising heat exchanger design concepts to be appropriate for integrated waste heat recovery and utilization.

2019 ◽  
Vol 158 ◽  
pp. 2196-2201 ◽  
Author(s):  
Yiji Lu ◽  
Anthony Paul Roskilly ◽  
Rui Huang ◽  
Xiaoli Yu

Author(s):  
Sharath Sathish ◽  
Pramod Kumar ◽  
Logesh Nagarathinam ◽  
Lokesh Swami ◽  
Adi Narayana Namburi ◽  
...  

Abstract The Brayton cycle based supercritical CO2 (sCO2) power plant is an emerging technology with benefits such as; higher cycle efficiency, smaller component sizes, reduced plant footprint, lower water usage, etc. There exists a high potential for its applicability in waste heat recovery cycles, either as bottoming cycles for gas turbines in a combined cycle or for industrial waste heat recovery in process industries such as iron & steel, cement, paper, glass, textile, fertilizer and food manufacturing. Conventionally steam Rankine cycle is employed for the gas turbine and industrial waste heat recovery applications. The waste heat recovery from a coke oven plant in an iron & steel industry is considered in this paper due to the high temperature of the waste heat and the technological expertise that exists in the author’s company, which has supplied over 50 steam turbines/ power blocks across India for various steel plants. An effective comparison between steam Rankine cycle and sCO2 Brayton cycle is attempted with the vast experience of steam power block technology and extending the high pressure-high temperature steam turbine design practices to the sCO2 turbine while also introducing the design of sCO2 compressor. The paper begins with an analysis of sCO2 cycles, their configurations for waste heat recovery and its comparison to a working steam cycle producing 15 MW net power in a coke oven plant. The sCO2 turbomachinery design follows from the boundary conditions imposed by the cycle and iterated with the cycle analysis for design point convergence. The design of waste heat recovery heat exchanger and other heat exchangers of the sCO2 cycle are not in the scope of this analysis. The design emphasis is on the sCO2 compressor and turbine that make up the power block. This paper highlights the design of a sCO2 compressor and turbine beginning from the specific speed-specific diameter (Ns-Ds) charts, followed by the meanline design. Subsequently, a detailed performance map is generated. The relevance of this paper is underscored by the first of a kind design and comparative analysis of a Brayton sCO2 power block with a working Steam Power block for the waste heat recovery in the energy intensive iron and steel industry.


2017 ◽  
Vol 5 (28) ◽  
pp. 14811-14818 ◽  
Author(s):  
Heqing Tian ◽  
Lichan Du ◽  
Chenglong Huang ◽  
Xiaolan Wei ◽  
Jianfeng Lu ◽  
...  

Thermal energy storage and transfer technology has received significant attention with respect to concentrating solar power (CSP) and industrial waste heat recovery systems.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5655
Author(s):  
F. P. Brito ◽  
João Silva Peixoto ◽  
Jorge Martins ◽  
António P. Gonçalves ◽  
Loucas Louca ◽  
...  

Industrial Waste Heat Recovery (IWHR) is one of the areas with strong potential for energy efficiency and emissions reductions in industry. Thermoelectric (TE) generators (TEGs) are among the few technologies that are intrinsically modular and can convert heat directly into electricity without moving parts, so they are nearly maintenance-free and can work unattended for long periods of time. However, most existing TEGs are only suitable for small-scale niche applications because they typically display a cost per unit power and a conversion efficiency that is not competitive with competing technologies, and they also tend to rely on rare and/or toxic materials. Moreover, their geometric configuration, manufacturing methods and heat exchangers are often not suitable for large-scale applications. The present analysis aims to tackle several of these challenges. A module incorporating constructive solutions suitable for upscaling, namely, using larger than usual TE elements (up to 24 mm in diameter) made from affordable p-tetrahedrite and n-magnesium silicide materials, was assessed with a multiphysics tool for conditions typical of IWHR. Geometric configurations optimized for efficiency, power per pair and power density, as well as an efficiency/power balanced solution, were extracted from these simulations. A balanced solution provided 0.62 kWe/m2 with a 3.9% efficiency. Good prospects for large-scale IWHR with TEGs are anticipated if these figures could be replicated in a real-world application and implemented with constructive solutions suitable for large-scale systems.


Sign in / Sign up

Export Citation Format

Share Document