CFD Analysis of Heat Exchanger and Aftercooler for Diesel Marine Engines

Author(s):  
Andrew S. Campbell ◽  
Jeff Ladendorf ◽  
Chenn Q. Zhou

Shell and tube heat exchangers and bar and plate aftercoolers are used in a diesel marine engine to remove heat from the engine coolant and to cool the pressurized air going into the engine. In order to improve the overall effectiveness of these two components, analyses have been performed using heat exchanger theory and the Computational Fluid Dynamics (CFD) software FLUENT®. Detailed information of flow property distributions and heat transfer was obtained in order to provide a fundamental understanding of the component operation. Comparisons have been made between CFD results, theoretical calculations, and measurement data. Parametric investigations and feasibility studies have been conducted to find optimum conditions for the engine and component performance.

From the current situation, the Heat Exchangers uses extreme commonly are tube and Shell heat exchangers. The most usual uses of Shell and tube heat exchangers are electricity creation, cooling system of hydraulic fluid, oil in motors, transmissions, and hydraulic power packs. Shell and tube heat exchangers are made of the casing using a bunch of tubes with inside. The desirable outcome of the paper is to figure out the speed of heat transport using hot water as the hot liquid. The target of this paper is to mimic a tube and shell heat exchanger and also to assess blood flow and temperatures from the tubes and shell by employing applications tool Ansys. The simulation is composed of modeling and meshing cross section of tube and shell heat exchanger utilizing computational fluid dynamics (CFD).


Author(s):  
Leonardo Cavalheiro Martinez ◽  
Leonardo Cavalheiro Martinez ◽  
Viviana Mariani ◽  
Marcos Batistella Lopes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Sign in / Sign up

Export Citation Format

Share Document