A Large-Scale Simulation on Two-Phase Flow Characteristics Around Duel Rods in a Tight-Lattice Core

Author(s):  
K. Takase ◽  
H. Yoshida ◽  
Y. Ose ◽  
H. Akimoto

Water-vapor two-phase flow structure in a fuel bundle of an advanced light water reactor was analyzed numerically by large-scale direct simulations. A newly developed two-phase flow analysis code was used. It can precisely predict the interface behavior between the liquid and gas phase by using the interface tracking method. The present analytical geometry simulates a tight-lattice fuel bundle with 37 fuel rods and four spacers. The fuel rod outer diameter is 13 mm and gap spacing between each rod is 1.3 mm. Each spacer is installed in an arbitrary axial position in order to keeping the gap width. Water flows upward from the bottom of the fuel bundle. The inlet conditions of water are as follows: temperature 283°C, pressure 7.2 MPa, flow rate 400 kg/m2s, and the Reynolds number 40,000. In the present study three-dimensional computations were carried out under the non-heated isothermal flow condition in order to remove the effect of heat transfer by the fuel rods. The average mesh size in the present numerical study was 0.15 mm. From results of a series of the numerical simulations, the following consideration was derived: 1)The fuel rod surface is encircled with thin water film; 2)The bridge phenomenon by the water film appears in the region where the spacing between fuel rods is narrow; 3)Vapor flows downward the triangular region where the spacing between fuel rods is large; and, 4)A flow configuration of vapor shows the streak structure in the vertical direction.

Author(s):  
Yota Suzuki ◽  
Yusei Tanaka ◽  
Taku Sakka ◽  
Akinori Sato ◽  
Kazuyuki Takase ◽  
...  

Clarifying thermal-hydraulic characteristics in a nuclear reactor core is important in particular to enhance the thermo-fluid safety of nuclear reactors. Spacers installed in subchannels of fuel assemblies have the role of keeping the interval between adjacent fuel rods constantly. Similarly, in case of PWR the spacer has also the role as the turbulence promoter. When the transient event occurs, two-phase flow is generated by boiling of water due to heating of fuel rods. Therefore, it is important to confirm the two-phase flow behavior around the spacer. So, the effect of the spacer affecting the two-phase flow was investigated experimentally at forced convective flow condition. Furthermore, in order to improve the thermal safety of current light water reactors, it is necessary to clarify the two-phase flow behavior in the subchannels at the stagnant flow condition. So, the bubbly flow data around a simulated fuel rod were obtained experimentally at the stagnant flow condition. A wire-mesh sensor was used to obtain a detailed two-dimensional void fraction distribution around the simulated spacer and fuel rod. As a result of this research, the bubbly behavior around the simulated spacer and fuel rod was qualitatively revealed and also bubble dynamics in the sub-channels at the conditions of forced convective and stagnant flows were evaluated. The present experimental data are very useful for verifying the detailed three-dimensional two-phase flow analysis codes.


2005 ◽  
Author(s):  
K. Takase ◽  
H. Yoshida ◽  
Y. Ose ◽  
H. Akimoto

In order to predict the water-vapor two-phase flow structure in a fuel bundle of an advanced light-water reactor, large-scale numerical simulations were carried out using a newly developed two-phase flow analysis method and a highly parallel-vector supercomputer. Conventional analysis methods such as subchannel codes need composition equations based on many experimental data. Therefore, it is difficult to obtain highly prediction accuracy on the thermal design of the advanced light-water reactor core if the experimental data are insufficient. Then, a new analysis method using the large-scale direct numerical simulation of water-vapor two-phase flow was proposed. The coalescence and fragmentation of small bubbles were investigated numerically and the bubbly flow dynamics in narrow fuel channels were clarified. Moreover, the liquid film flow inside a tight-lattice fuel bundle which is used to the advanced light-water reactor core was analyzed and the water and vapor distributions around fuel rods and a spacer were estimated quantitatively.


2005 ◽  
Vol 4 (2) ◽  
pp. 106-114 ◽  
Author(s):  
Hiroyuki YOSHIDA ◽  
Yasuo OSE ◽  
Masatoshi KURETA ◽  
Takuji NAGAYOSHI ◽  
Kazuyuki TAKASE ◽  
...  

Author(s):  
Hengwei Zhang ◽  
Yao Xiao ◽  
Hanyang Gu

Abstract Tight lattice bundle can improve the conversion ratio and the heat transfer coefficient between the fuel bundle and the coolant, which is widely used in the innovative reactor fuel bundle design. The P/D ratio of a tight lattice bundle is usually less than 1.1, which is smaller than that of a conventional rod bundle. In the small-break loss-of-coolant accident (LOCA), the steam-water two-phase flow will occur in the reactor. The investigation of gas-liquid two-phase flow in the tight lattice is very important to the reactor safety analysis. A dual sub-channels tight lattice was designed in this study. The original reference of the channel is the annular fuel bundle, with the fuel diameter of 15.52mm, pitch of 16.51mm, P/D = 1.06. The original reference of working condition is the stream-water two-phase flow under the pressure of 15.5MPa. The experimental condition is the air-water two-phase flow at the normal temperature and pressure. According to the ratio of a critical bubble diameter in the reactor (steam-water) to that in atmospheric conditions (air-water), the channel is zoomed in 2.7 times. The diameter of the rod in the dual sub-channels tight lattice is 42mm and the pitch is 44.6mm. The total length of the dual sub-channels tight lattice is 3m. A self-developed 16 × 32 Wire-mesh sensor (WMS) was used to measure the void fraction distribution of air-water two-phase flow in the dual sub-channels tight lattice channel. The spatial resolution of the WMS is 2.79mm and the temporal resolution is 5000fps. The WMS was installed at a distance of 2.5m from the channel inlet and 0.5m from the outlet, which can avoid the influence of outlet on bubbles. The experimental range of flow condition is 0.921–1.84m/s for the superficial liquid velocity and 0.0884–1.07m/s for the superficial gas velocity. The instantaneous and time-averaged void fraction distributions in the channel was measured. With the increase of superficial gas velocity, the distribution of void fraction distribution changed from the wall peak to the core peak. The characteristics of bubbles in the sub-channel were also discussed in this study.


Author(s):  
Lissett Barrios ◽  
Stuart Scott ◽  
Charles Deuel

The paper reports on developmental research on the effects of viscosity and two phases, liquid–gas fluids on ESPs which are multi stage centrifugal pumps for deep bore holes. Multiphase viscous performance in a full-scale Electrical Submersible Pump (ESP) system at Shell’s Gasmer facility has been studied experimentally and theoretically. The main objectives is to predict the operational conditions that cause degradations for high viscosity fluids when operating in high Gas Liquid Radio (GLR) wells to support operation in Shell major Projects. The system studied was a 1025 series tandem WJE 1000. The test was performed using this configuration with ten or more pump stages moving fluids with viscosity from 2 to 200 cP at various speed, intake pressure and Gas Void Fractions (GVF). For safety considerations the injected gas was restricted to nitrogen or air. The ESP system is a central artificial lift method commonly used for medium to high flow rate wells. Multiphase flow and viscous fluids causes problems in pump applications. Viscous fluids and free gas inside an ESP can cause head degradation and gas locking. Substantial attempts have been made to model centrifugal pump performance under gas-liquid viscous applications, however due to the complexity this is still a uncertain problem. The determination of the two-phase flow performance in these harmful conditions in the ESP is fundamental aspects in the surveillance operation. The testing at Shell’s Gasmer facility revealed that the ESP system performed as theoretical over the range of single flowrates and light viscosity oils up to Gas Volume Fractions (GVF) around 25%. The developed correlations predict GVF at the pump intake based on the operational parameters. ESP performance degrades at viscosity higher than 100cp as compared to light oil applications, gas lock condition is observed at gas fraction higher than 45%. Pump flowrate can be obtained from electrical current and boost for all range of GVF and speed. The main technical contributions are the analysis of pump head degradation under two important variables, high viscosity and two-phase flow inside the ESP.


2008 ◽  
Vol 164 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Hiroyuki Yoshida ◽  
Akira Ohnuki ◽  
Takeharu Misawa ◽  
Kazuyuki Takase ◽  
Hajime Akimoto

Sign in / Sign up

Export Citation Format

Share Document