Molecular Dynamics Study of Short-Pulse Laser Melting, Recrystallization, Spallation, and Ablation of Metal Targets

Author(s):  
Leonid V. Zhigilei ◽  
Zhibin Lin ◽  
Dmitriy S. Ivanov

A hybrid computational model combining classical molecular dynamics method for simulation of fast nonequilibrium phase transformations with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons is developed. The model is applied for a systematic computational investigation of the mechanisms of short pulse laser interaction with bulk metal targets. The material response to laser irradiation is investigated in three regimes corresponding to the melting and resolidification of the surface region of the target, photomechanical spallation of a single or multiple layers/droplets, and ablation driven by the thermodynamic driving forces. The conditions leading to the transitions between the different regimes and the atomic-level characteristics of the involved processes are established.

Author(s):  
F. Beaudoin ◽  
P. Perdu ◽  
C. DeNardi ◽  
R. Desplats ◽  
J. Lopez ◽  
...  

Abstract Ultra-short pulse laser ablation is applied to IC backside sample preparation. It is contact-less, non-thermal, precise and can ablate the various types of material present in IC packages. This study concerns the optimization of ultra-short pulse laser ablation for silicon thinning. Uncontrolled silicon roughness and poor uniformity of the laser thinned cavity needed to be tackled. Special care is taken to minimize the silicon RMS roughness to less than 1µm. Application to sample preparation of 256Mbit devices is presented.


2013 ◽  
Vol 115 (4) ◽  
pp. 1469-1477 ◽  
Author(s):  
Evgeny Kharanzhevskiy ◽  
Sergey Reshetnikov

Sign in / Sign up

Export Citation Format

Share Document