Optimization of Jacket Type Offshore-Tower Under Uncertainties

Author(s):  
V. Togan ◽  
H. Karadeniz ◽  
A. T. Daloglu

In this work, economical design implementation of a jacket tower, which is subjected to some uncertainties associated with the loads, the material properties, and environmental data etc., is presented. In order to fulfill the defined task, reliability based design optimization (RBDO) concept combining the reliability analysis and optimization is performed with reliability constraints including stress, buckling, and the lowest natural frequency. The probabilistic constraints are evaluated by using Reliability Index Approach (RIA) and Performance Measure approach (PMA). The mass of the tower is considered as being the objective function; the thickness and diameter of the cross-section of the jacket members are taken as being design variables of the optimization.

1999 ◽  
Vol 121 (4) ◽  
pp. 557-564 ◽  
Author(s):  
J. Tu ◽  
K. K. Choi ◽  
Y. H. Park

This paper presents a general approach for probabilistic constraint evaluation in the reliability-based design optimization (RBDO). Different perspectives of the general approach are consistent in prescribing the probabilistic constraint, where the conventional reliability index approach (RIA) and the proposed performance measure approach (PMA) are identified as two special cases. PMA is shown to be inherently robust and more efficient in evaluating inactive probabilistic constraints, while RIA is more efficient for violated probabilistic constraints. Moreover, RBDO often yields a higher rate of convergence by using PMA, while RIA yields singularity in some cases.


Author(s):  
Po Ting Lin ◽  
Yogesh Jaluria ◽  
Hae Chang Gea

Reliability-based Design Optimization problems have been solved by two well-known methods: Reliability Index Approach (RIA) and Performance Measure Approach (PMA). RIA generates first-order approximate probabilistic constraints using the measures of reliability indices. For infeasible design points, the traditional RIA method suffers from inaccurate evaluation of the reliability index. To overcome this problem, the Modified Reliability Index Approach (MRIA) has been proposed. The MRIA provides the accurate solution of the reliability index but also inherits some inefficiency characteristics from the Most Probable Failure Point (MPFP) search when nonlinear constraints are involved. In this paper, the benchmark examples have been utilized to examine the efficiency and stability of both PMA and MRIA. In our study, we found that the MRIA is capable of obtaining the correct optimal solutions regardless of the locations of design points but the PMA is much efficient in the inverse reliability analysis. To take advantages of the strengths of both methods, a Hybrid Reliability Approach (HRA) is proposed. The HRA uses a selection factor that can determine which method to use during optimization iterations. Numerical examples from the proposed method are presented and compared with the MRIA and the PMA.


Author(s):  
Akhil Sopory ◽  
Sankaran Mahadevan ◽  
Zissimos P. Mourelatos ◽  
Jian Tu

Several procedures have been developed in the literature for reliability-based design optimization (RBDO), including the Reliability Index Approach (RIA), the Performance Measure Approach (PMA), and more recent techniques wherein the reliability and optimization calculations are decoupled. This paper extends the decoupled approach to include standard deviations as design parameters and wherein simulation or other methods can replace the traditional first order analytical method for reliability assessment. The methods are extended to robust design and their applicability is investigated. The paper also investigates a single loop method and extends it for the robust design problem. The accuracy and computational efficiency of the various RBDO methods are compared.


Author(s):  
Ikjin Lee ◽  
Kyung K. Choi ◽  
Liu Du ◽  
David Gorsich

In a gradient-based design optimization, it is necessary to know sensitivities of the constraint with respect to the design variables. In a reliability-based design optimization (RBDO), the constraint is evaluated at the most probable point (MPP) and called the probabilistic constraint, thus it requires the sensitivities of the probabilistic constraints at MPP. This paper presents the rigorous analytic derivation of the sensitivities of the probabilistic constraint at MPP for both First Order Reliability Method (FORM)-based Performance Measure Approach (PMA) and Dimension Reduction Method (DRM)-based PMA. Numerical examples are used to demonstrate that the analytic sensitivities agree very well with the sensitivities obtained from the finite difference method (FDM). However, since the sensitivity calculation at the true DRM-based MPP requires the second-order derivatives and additional MPP search, the sensitivity derivation at the approximated DRM-based MPP, which does not require the second-order derivatives and additional MPP search to find the DRM-based MPP, is proposed in this paper. A convergence study illustrates that the sensitivity at the approximated DRM-based MPP converges to the sensitivity at the true DRM-based MPP as the design approaches the optimum design. Hence, the sensitivity at the approximated DRM-based MPP is proposed to be used for the DRM-based RBDO to enhance the efficiency of the optimization.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Po Ting Lin ◽  
Hae Chang Gea ◽  
Yogesh Jaluria

Reliability-based design optimization (RBDO) problems have been intensively studied for many decades. Since Hasofer and Lind [1974, “Exact and Invariant Second-Moment Code Format,” J. Engrg. Mech. Div., 100(EM1), pp. 111–121] defined a measure of the second-moment reliability index, many RBDO methods utilizing the concept of reliability index have been introduced as the reliability index approach (RIA). In the RIA, reliability analysis problems are formulated to find the reliability indices for each performance constraint and the solutions are used to evaluate the failure probability. However, the traditional RIA suffers from inefficiency and convergence problems. In this paper, we revisited the definition of the reliability index and revealed the convergence problem in the traditional RIA. Furthermore, a new definition of the reliability index is proposed to correct this problem and a modified reliability index approach is developed based on this definition. The strategies to solve RBDO problems with non-normally distributed design variables by the modified RIA are also investigated. Numerical examples using both the traditional and modified RIAs are compared and discussed.


Sign in / Sign up

Export Citation Format

Share Document