Stiffness Analysis of Gear Shaping Machine in Radial Direction With Gear Wheel-Cutter

Author(s):  
Petru A. Pop ◽  
Gheorghe Bejinaru-Mihoc ◽  
Ioan Olaru

The machining of cylindrical gears by gear shaping with gear wheel-cutter has accompanied of known cutting errors met at rolling gears cutting: pitch error, total pitch error, profile tooth error, circular runout, etc. The technical papers consider that two aspects can analyze gears shaping precision with gear wheel-cutter: first by the analysis of profile gear cutting errors, and second by profile gear cutting errors in “closing zone of teeth gear”, with a main factor according of stiffness machine tools. The analysis of stiffness machine has done with the values displacements and relative rotations of machine subassemblies to a fixed datum system and two mobile datum systems, in dependence of load applied during idle running or gear shaping process, could be defined three stiffness’s: static, quasi-static and dynamic stiffness. During the cutting process, the variation predictable distance between cutter axe and wheel-workpiece axe is important. This study is carrying out by stiffness machine analysis in radial direction of OY axe. The paper has proposed a method of quasi-static stiffness machine determination of gear shaping process with wheel-cutter. During cutting process occurs altering positions between subassemblies of ram-toolholder and rotated table, even is used finishing working conditions. The research has done by an integration system “force-displacement”, formed by a dynamometer adaptable of gear machine-MD 250, which allowing the acquisition of cutting forces on three axes and displacements of ram-toolholder-workpiece during machining process. The measurement has done in “closing zone of gear”, respectively the outside of that, due to determination of stiffness machine tools. In addition, this research presented the assessing of working accuracy of gear shaping machine with gear wheel-cutter.

2020 ◽  
Vol 110 (05) ◽  
pp. 295-298
Author(s):  
Christian Brecher ◽  
Florian Kneer ◽  
Stephan Neus

Die axiale Steifigkeit von Kugelgewindetrieben ist wesentlich für das Betriebsverhalten von Werkzeugmaschinen. Während der Bearbeitung werden die Prozesskräfte über den Kugelgewindetrieb in die Maschinenstruktur übertragen. Kugelgewindetriebe tragen daher maßgeblich zur Qualität und Produktivität von Werkzeugmaschinen bei. Dieser Beitrag beschreibt eine Methode zur messtechnischen, prüfstandsgebundenen Ermittlung des Last-Verlagerungsverhaltens an Kugelgewindetrieben.   The axial elastic displacement of ball screws are essential for the operating behavior of machine tools. During machining, process forces must be transmitted to the machine structure via the ball screw. Ball screws contribute significantly to the quality and productivity of machine tools. This technical paper describes a methodology for the metrological determination of the load-displacement behavior on ball screws.


2016 ◽  
Vol 10 (5) ◽  
pp. 804-812 ◽  
Author(s):  
Makoto Yamada ◽  
◽  
Tsukasa Kondo ◽  
Kai Wakasa

In the integrally shaping process from a simple material shape to an objective shape, it is necessary to reduce the time required for the machining process in order to improve cost savings and the effectiveness of mass production. For the purpose of achieving high efficiency in the integral shaping from simplicity materials, we have focused on a rough cutting process that requires the most time in the manufacturing process. The purpose of this research is to propose a method for realizing high-speed rough machining using five-axis machine tools with a voxel model, and confirm the high efficiency of the rough cutting. In this research, we use five-axis controlled machine tools for material machining, and suggest two machining methods for the rough cutting process using the voxel model. The first method derives the tool posture where the cutting removal quantity becomes the maximum; this method also carries out a rough cutting process via 3+2 axis controlled machining. The other method carries a complete convex shape that includes the required shape, and simultaneously machines via five-axis machining based on the complete convex shape. This paper demonstrates the 3+2 axis control machining method that uses the voxel model to perform the rough machining process with high efficiency, and the simultaneous five-axis control machining method that uses a complete convex shape model for rough machining. We confirm the results with a computer simulation and actual machining experiments.


Author(s):  
John M. Lange

The Gear shaping process, like all gear manufacturing processes, has been enhanced by the application of CNC Technology. In the case of the gear shaping process the “partial” application of CNC Technology first occurred in 1982. While virtually all gear cutting and grinding machines have had their axes of motions converted to CNC, the development of a CNC electronic helical guide for the gear shaping process was delayed for technological reasons. The following questions will be discussed and answered: • Why is a helical guide necessary in the gear shaping process? • What had delayed CNC technology from being applied to the helical guide principle in the gear shaping process? • How has the addition of the electronic guide CNC Technology impacted the gear shaping process? • Have lead quality and productivity rates been aversely affected by the addition of the electronic guide feature? • How might this increase in flexibility, by using an electronic guide in the shaping process, be applied to real life applications?


2010 ◽  
Vol 4 (3) ◽  
pp. 213-213
Author(s):  
Keiichi Shirase

In the 5 decades-plus since the first numerical control (NC) machine tool was demonstrated at the Massachusetts Institute of Technology in Boston, MA, USA, advances such as high-speed, multi-axis and multi-tasking machine tools have been introduced widely to achieve high quality and productivity in machining operations. In order to handle these sophisticated machine tools freely and effectively, sophisticated NC programs are conventionally required in advance for problem-free machining. Computer simulation and optimization of cutting processes by considering process physics, machine tool dynamics and kinematics and process constraints are helpful in the strategic process planning operation and useful in preparing sophisticated NC programs. However, challenges and models quantitatively predicting cutting process performance remain to be developed. Topics of interests in this special issue include but are not limited to - machining process modeling - machine tool dynamics modeling - cutting force, cutting temperature, surface roughness, etc., prediction - machining stability prediction - simulation-based machining-process diagnostics - optimization using machining simulation The review paper and ten research works accepted are related to state-of-the-art modeling and simulation applicable to the machining and manufacturing domains. Besides traditional machining, nontraditional machining such as laser machining for micromachining have been explored. Also the machining of calcium polyphosphate (CPP) for tissue engineering applications has been investigated. The articles in this special issue are sure to prove interesting, informative, and inspiring to our readers on advances in cutting process modeling and simulation. Finally, we thank the authors, reviewers, and editors for their invaluable contributions and generous efforts in enabling this issue to be published.


Author(s):  
S.V. Povorov ◽  
D.V. Egorov ◽  
D.S. Volgin

The change in cutting force in the cutting process of roll-formed section in shaped dies-knife guillotine is studied. It is established that to calculate the cutting force in shaped guillotine, one can use formulas to determine the cutting force of sheet blank on conventional straight knives guillotine.


2016 ◽  
Vol 686 ◽  
pp. 39-44 ◽  
Author(s):  
Józef Gawlik ◽  
Joanna Krajewska-Śpiewak ◽  
Wojciech Zębala

The chip-forming precision machining process plays a significant role in the mechanical technology. In planning of machining operation, it is crucial to supply the information about the possible minimal value of the machining allowance. For the technologist, when planning the machining operation, it is important to define the minimal thickness of cutting layer correctly. This article presents a new method of describing the start of decohesion process in a workpiece, meaning the determination of the minimal thickness of cutting layer based on the AE signal generated in the cutting zone. The research conducted on the turning of an alloy steel and the analysis of the AE signal strength confirmed that the proposed method opens new possibilities in quickening the identification of the minimal thickness of cutting layer under normal machining conditions.


Sign in / Sign up

Export Citation Format

Share Document