Design Optimization of an L-Shaped Extrusion Die

Author(s):  
Oktay Yilmaz ◽  
Hasan Gunes ◽  
Kadir Kirkkopru

It is an important problem in the polymer extrusion of complex profiles to balance the flow at the die exit. In this paper, we employ simulated annealing-kriging meta-algorithm to optimize the geometric parameters of a die channel to obtain a uniform exit velocity distribution. Design variables for our optimization problem involve the suitable geometric parameters for the die design, which are the thickness of the large channel and the length of the narrow channel. Die balance is based on the deviation of the velocity with respect to the average velocity at the die exit. So the cost function for the optimization problem involves the minimization of this deviation. For the design of numerical experiments, we use Latin Hypercube Sampling (LHS) to construct the kriging model. Then, based on the LHS points, the numerical solutions are performed using Polyflow, a commercial software based on the finite element method and is specifically designed to simulate the flow and heat transfer of non-newtonian, viscoelastic fluids. In our simulations, a HDPE (high density polyethylene) is used as extrusion material. Having obtained numerical simulations for N = 60 LHS points in two-dimensional parameter space (t and L), the optimization of these parameters is carried out by Simulated Annealing (SA) method in conjunction with kriging model. We show that kriging model employed in SA algorithm can be used to optimize the die geometry.

Author(s):  
Sertac Cadirci ◽  
Bugra Selenbas ◽  
Hasan Gunes

In this study we present models for the parametric optimization of a centrifugal fan impeller using kriging-simulated annealing (SA) meta-algorithm. First, a kriging model is constructed using a limited number of CFD simulations for the centrifugal fan impeller to be optimized. The inlet and outlet blade angles are chosen to optimize the impeller. A dataset consisting of 22 different blade angles are determined by Latin Hypercube Sampling (LHS). After validation of the kriging model, it is used in conjunction with the simulated annealing and thus a meta-algorithm is developed for the solution of global optimization problem for the impeller optimization. Within the desired range of parameters, it is shown that this meta-algorithm provides a robust, reliable and fast optimization method. The procedures can be used to many problems in engineering. In this study a centrifugal fan impeller is successfully optimized using this procedure.


Author(s):  
Roberto Benedetti ◽  
Maria Michela Dickson ◽  
Giuseppe Espa ◽  
Francesco Pantalone ◽  
Federica Piersimoni

AbstractBalanced sampling is a random method for sample selection, the use of which is preferable when auxiliary information is available for all units of a population. However, implementing balanced sampling can be a challenging task, and this is due in part to the computational efforts required and the necessity to respect balancing constraints and inclusion probabilities. In the present paper, a new algorithm for selecting balanced samples is proposed. This method is inspired by simulated annealing algorithms, as a balanced sample selection can be interpreted as an optimization problem. A set of simulation experiments and an example using real data shows the efficiency and the accuracy of the proposed algorithm.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


2014 ◽  
Vol 11 (2) ◽  
pp. 339-350
Author(s):  
Khadidja Bouali ◽  
Fatima Kadid ◽  
Rachid Abdessemed

In this paper a design methodology of a magnetohydrodynamic pump is proposed. The methodology is based on direct interpretation of the design problem as an optimization problem. The simulated annealing method is used for an optimal design of a DC MHD pump. The optimization procedure uses an objective function which can be the minimum of the mass. The constraints are both of geometrics and electromagnetic in type. The obtained results are reported.


2005 ◽  
Vol 9 (2) ◽  
pp. 149-168 ◽  
Author(s):  
A. Misevičius

In this paper, we present an improved hybrid optimization algorithm, which was applied to the hard combinatorial optimization problem, the quadratic assignment problem (QAP). This is an extended version of the earlier hybrid heuristic approach proposed by the author. The new algorithm is distinguished for the further exploitation of the idea of hybridization of the well‐known efficient heuristic algorithms, namely, simulated annealing (SA) and tabu search (TS). The important feature of our algorithm is the so‐called “cold restart mechanism”, which is used in order to avoid a possible “stagnation” of the search. This strategy resulted in very good solutions obtained during simulations with a number of the QAP instances (test data). These solutions show that the proposed algorithm outperforms both the “pure” SA/TS algorithms and the earlier author's combined SA and TS algorithm. Key words: hybrid optimization, simulated annealing, tabu search, quadratic assignment problem, simulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Da-Wei Jin ◽  
Li-Ning Xing

The multiple satellites mission planning is a complex combination optimization problem. A knowledge-based simulated annealing algorithm is proposed to the multiple satellites mission planning problems. The experimental results suggest that the proposed algorithm is effective to the given problem. The knowledge-based simulated annealing method will provide a useful reference for the improvement of existing optimization approaches.


Author(s):  
Simona Di Nino ◽  
Angelo Luongo

AbstractThe aeroelastic behavior of a planar prismatic visco-elastic structure, subject to a turbulent wind, flowing orthogonally to its plane, is studied in the nonlinear field. The steady component of wind is responsible for a Hopf bifurcation occurring at a threshold critical value; the turbulent component, which is assumed to be a small harmonic perturbation of the former, is responsible for parametric excitation. The interaction between the two bifurcations is studied in a three-dimensional parameter space, made of the two wind amplitudes and the frequency of the turbulence. Aeroelastic forces are computed by the quasi-static theory. A one-D.O.F dynamical system, drawn by a Galerkin projection of the continuous model, is adopted. The multiple scale method is applied, to get a two-dimensional bifurcation equation. A linear stability analysis is carried out to determine the loci of periodic and quasi-periodic bifurcations. Limit cycles and tori are computed by exact, asymptotic, and numerical solutions of the bifurcation equations. Numerical results are obtained for a sample structure, and compared with finite-difference solutions of the original partial differential equation of motion.


2013 ◽  
Vol 651 ◽  
pp. 879-884
Author(s):  
Qi Wang ◽  
Ying Min Wang ◽  
Yan Ni Gou

The matched field processing (MFP) for localization usually needs to match all the replica fields in the observation sea with the received fields, and then find the maximum peaks in the matched results, so how to find the maximum in the results effectively and quickly is a problem. As known the classical simulated annealing (CSA) which has the global optimization capability is used widely for combinatorial optimization problems. For passive localization the position of the source can be recognized as a combinatorial optimization problem about range and depth, so a new matched field processing based on CSA is proposed. In order to evaluate the performance of this method, the normal mode was used to calculate the replica field. Finally the algorithm was evaluated by the dataset in the Mediterranean Sea in 1994. Comparing to the conventional matched field passive localization (CMFP), it can be conclude that the new one can localize optimum peak successfully where the output power of CMFP is maximum, meanwhile it is faster than CMFP.


Author(s):  
José Enrique Jaime-Leal ◽  
Adrián Bonilla-Petriciolet

In this study, several local composition models and stochastic optimization methods have been used and compared in data fitting of activity coefficients in aqueous electrolytes. We have utilized the electrolyte-NRTL model of Chen et al. and the modified Wilson models proposed by Xu and Macedo, and Zhao et al. to fit the activity coefficients of several quaternary ammonium salts in water at 25°C. These electrolytes have interesting properties for their application as ionic liquids. However, the modeling of their thermodynamic behavior using local composition models is a global optimization problem. In this study, several stochastic optimization methods have been used to solve this optimization problem and their numerical performances have been compared. Specifically, we have tested the classical Simulated Annealing and the hybrid methods: Direct Search Simulated Annealing, Simplex Coding Genetic Algorithm, Simulated Annealing Heuristic Pattern Search, and Directed Tabu Search. Our results show that Simulated Annealing is a suitable tool for data fitting of the activity coefficients of aqueous electrolytes. Finally, the tested models can satisfactorily correlate the mean activity coefficients of electrolytes treated in this study, and are suitable for process design.


Sign in / Sign up

Export Citation Format

Share Document