Vibration Energy Harvesting of a Hydraulic Engine Mount Using a Turbine

Author(s):  
Omid Mohareri ◽  
Siamak Arzanpour

The hydraulic engine mount (HEM) has been designed to provide a vibration isolation characteristic to control road and engine induced vibrations in vehicles by using two fluid passages known as decoupler and inertia track. These types of engine mounts are known for their best noise, vibration, and harshness (NVH) suppression performance among other different types of engine mounts. However, a low cost technique to recycle the dissipated energy of the system in the process of vibration suppression is significantly advantageous. A novel design structure in which the decoupler is replaced with a water turbine to capture and restore the vibration energy of the system is presented in this paper. The turbine design and selection has been done based on the upper and lower chamber pressures and the fluid flow rates in the system’s resonant frequency. The mount vibration isolation and energy generation performance is studied in both frequency and time domains. The simulation results demonstrate that a considerable amount of energy can be harvested from the engine vibration sources. This recent study demonstrates a novel energy harvesting technique in vehicles that require minimum design modifications of conventional hydraulic mounts.

2021 ◽  
Vol 8 (3) ◽  
pp. 031317
Author(s):  
Tao Yang ◽  
Shengxi Zhou ◽  
Shitong Fang ◽  
Weiyang Qin ◽  
Daniel J. Inman

2014 ◽  
Vol 1 (3-4) ◽  
Author(s):  
Yongke Yan ◽  
Anthony Marin ◽  
Yuan Zhou ◽  
Shashank Priya

AbstractHigh-performance low-cost multilayer textured Pb(Mg


2011 ◽  
Vol 11 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Emmanuel Bouendeu ◽  
Andreas Greiner ◽  
Patrick J. Smith ◽  
Jan G. Korvink

2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera

The current article deals with finite element (FE)- and genetic algorithm (GA)-based vibration energy harvesting from a tapered piezolaminated cantilever beam. Euler–Bernoulli beam theory is used for modeling the various cross sections of the beam. The governing equation of motion is derived by using the Hamilton's principle. Two noded beam elements with two degrees of freedom at each node have been considered in order to solve the governing equation. The effect of structural damping has also been incorporated in the FE model. An electric interface is assumed to be connected to measure the voltage and output power in piezoelectric patch due to charge accumulation caused by vibration. The effects of taper (both in the width and height directions) on output power for three cases of shape variation (such as linear, parabolic and cubic) along with frequency and voltage are analyzed. A real-coded genetic algorithm-based constrained (such as ultimate stress and breakdown voltage) optimization technique has been formulated to determine the best possible design variables for optimal harvesting power. A comparative study is also carried out for output power by varying the cross section of the beam, and genetic algorithm-based optimization scheme shows the better results than that of available conventional trial and error methods.


Author(s):  
Sudhir Kaul ◽  
Anoop K. Dhingra ◽  
Timothy G. Hunter

This paper presents a comprehensive model to capture the dynamics of a motorcycle system in order to evaluate the quality of vibration isolation. The two main structural components in the motorcycle assembly - the frame and the swing-arm - are modeled using reduced order finite element models; the power-train assembly is modeled as a six degree-of-freedom (DOF) rigid body connected to the frame through the engine mounts and to the swing-arm through a shaft assembly. The engine mounts are modeled as tri-axial spring-damper systems. Models of the front-end assembly as well as front and rear tires are also included in the overall model. The complete vehicle model is used to solve the engine mount optimization problem so as to minimize the total force transmitted to the frame while meeting packaging and other side constraints. The mount system parameters - stiffness, position and orientation vectors - are used as design variables for the optimization problem. The imposed loads include forces and moments due to engine imbalance as well as loads transmitted due to irregularities in the road surface through the tire patch.


Sign in / Sign up

Export Citation Format

Share Document