Simulation of a Gas Turbine Engine With Performance Degradation Modeling

Author(s):  
Ugo Campora ◽  
Mauro Carretta ◽  
Carlo Cravero

A simulation of performance degradation for an aeronautical gas turbine engine (Honeywell T55 L712) is presented. The effects of turbine (low and high pressure stages) erosion on the engine performance have been investigated in some detail. The behavior of the engine has been simulated using a dynamic model implemented in Matlab-Simulink. Using a throughflow code the LPT and HPT have been simulated and their performance maps have been obtained with a high level of accuracy. In order to understand the effects of turbine erosion nine degradation levels have been introduced and the LPT and HPT performance have been computed using the abovementioned throughflow code. The degradation levels have been based on stator erosion effects (increase of throat section and blade thickness reduction) only according to the experimental evidence from the engine tests from Piaggio Aero Industries. The introduction of the modified turbine characteristics into the Matlab-Simulink model has allowed the degradation effects on the overall engine performance to be tested and discussed. Finally, using experimental data from the industrial maintenance database, the link of each level of degradation with the number of the engine operational time (hours) has been obtained.

Author(s):  
Peter D. Smout ◽  
Steven C. Cook

The determination of gas turbine engine performance relies heavily on intrusive rakes of pilot tubes and thermocouples for gas path pressure and temperature measurement. For over forty years, Kiel-shrouds mounted on the rake body leading edge have been used as the industry standard to de-sensitise the instrument to variations in flow incidence and velocity. This results in a complex rake design which is expensive to manufacture, susceptible to mechanical damage, and difficult to repair. This paper describes an exercise aimed at radically reducing rake manufacture and repair costs. A novel ’common cavity rake’ (CCR) design is presented where the pressure and/or temperature sensors are housed in a single slot let into the rake leading edge. Aerodynamic calibration data is included to show that the performance of the CCR design under uniform flow conditions and in an imposed total pressure gradient is equivalent to that of a conventional Kiel-shrouded rake.


1992 ◽  
Vol 114 (4) ◽  
pp. 763-767 ◽  
Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
C. G. Brockus

An analog fuel control for a gas turbine engine was compared with several state-space derived fuel controls. A single-spool, simple cycle gas turbine engine was modeled using ACSL (high level simulation language based on FORTRAN). The model included an analog fuel control representative of existing commercial fuel controls. The ACSL model was stripped of nonessential states to produce an eight-state linear state-space model of the engine. The A, B, and C matrices, derived from rated operating conditions, were used to obtain feedback control gains by the following methods: (1) state feedback; (2) LQR theory; (3) Bellman method; and (4) polygonal search. An off-load transient followed by an on-load transient was run for each of these fuel controls. The transient curves obtained were used to compare the state-space fuel controls with the analog fuel control. The state-space fuel controls did better than the analog control.


Author(s):  
V. Pachidis ◽  
P. Pilidis ◽  
I. Li

The performance analysis of modern gas turbine engine systems has led industry to the development of sophisticated gas turbine performance simulation tools and the utilization of skilled operators who must possess the ability to balance environmental, performance and economic requirements. Academic institutions, in their training of potential gas turbine performance engineers have to be able to meet these new challenges, at least at a postgraduate level. This paper describes in detail the “Gas Turbine Performance Simulation” module of the “Thermal Power” MSc course at Cranfield University in the UK, and particularly its practical content. This covers a laboratory test of a small Auxiliary Power Unit (APU) gas turbine engine, the simulation of the ‘clean’ engine performance using a sophisticated gas turbine performance simulation tool, as well as the simulation of the degraded performance of the engine. Through this exercise students are expected to gain a basic understanding of compressor and turbine operation, gain experience in gas turbine engine testing and test data collection and assessment, develop a clear, analytical approach to gas turbine performance simulation issues, improve their technical communication skills and finally gain experience in writing a proper technical report.


Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
R. W. Garman

A two-and-one-half spool gas turbine engine was modeled using the Advanced Computer Simulation Language (ACSL), a high level simulation environment based on FORTRAN. A possible future high efficiency engine for powering naval ships is an intercooled, regenerated (ICR) gas turbine engine and these features were incorporated into the model. Utilizing sophisticated instructions available in ACSL linear state-space models for this engine were obtained. A high level engineering computational language, MATLAB, was employed to exercise these models to obtain optimal feedback controllers characterized by the following methods: (1) state feedback; (2) linear quadratic regulator (LQR) theory; and (3) polygonal search. The methods were compared by examining the transient curves for a fixed off-load, and on-load profile.


Author(s):  
J. D. MacLeod ◽  
B. Drbanski

The Engine Laboratory of the National Research Council of Canada (NRCC), with the assistance of Standard Aero Ltd., has established a program for the evaluation of component deterioration on gas turbine engine performance. As part of this project, a study of the effects of turbine rebuild tolerances on overall engine performance was undertaken. This study investigated the range of performance changes that might be expected for simply disassembling and reassembling the turbine module of a gas turbine engine, and how these changes would influence the results of the component fault implantation program. To evaluate the effects of rebuilding the turbine on the performance of a single spool engine, such as Allison T56 turboprop engine, a series of three rebuilds were carried out. This study was performed in a similar way to a previous NRCC study on the effects of compressor rebuilding. While the compressor rebuild study had found performance changes in the order of 1% on various engine parameters, the effects of rebuilding the turbine have proven to be even more significant. Based on the results of the turbine rebuild study, new methods to improve the assurance of the best possible tolerances during the rebuild process are currently being addressed. This paper describes the project objectives, the experimental installation, and the results of the performance evaluations. Discussed are performance variations due to turbine rebuilds on engine performance characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.


Sign in / Sign up

Export Citation Format

Share Document