scholarly journals A Model and State-Space Controllers for an Intercooled, Regenerated (ICR) Gas Turbine Engine

Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
R. W. Garman

A two-and-one-half spool gas turbine engine was modeled using the Advanced Computer Simulation Language (ACSL), a high level simulation environment based on FORTRAN. A possible future high efficiency engine for powering naval ships is an intercooled, regenerated (ICR) gas turbine engine and these features were incorporated into the model. Utilizing sophisticated instructions available in ACSL linear state-space models for this engine were obtained. A high level engineering computational language, MATLAB, was employed to exercise these models to obtain optimal feedback controllers characterized by the following methods: (1) state feedback; (2) linear quadratic regulator (LQR) theory; and (3) polygonal search. The methods were compared by examining the transient curves for a fixed off-load, and on-load profile.

1992 ◽  
Vol 114 (4) ◽  
pp. 763-767 ◽  
Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
C. G. Brockus

An analog fuel control for a gas turbine engine was compared with several state-space derived fuel controls. A single-spool, simple cycle gas turbine engine was modeled using ACSL (high level simulation language based on FORTRAN). The model included an analog fuel control representative of existing commercial fuel controls. The ACSL model was stripped of nonessential states to produce an eight-state linear state-space model of the engine. The A, B, and C matrices, derived from rated operating conditions, were used to obtain feedback control gains by the following methods: (1) state feedback; (2) LQR theory; (3) Bellman method; and (4) polygonal search. An off-load transient followed by an on-load transient was run for each of these fuel controls. The transient curves obtained were used to compare the state-space fuel controls with the analog fuel control. The state-space fuel controls did better than the analog control.


Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
C. G. Brockus

An analog fuel control for a gas turbine engine was compared with several state space derived fuel controls. A single spool, simple cycle gas turbine engine was modeled using ACSL (high level simulation language based on FORTRAN). The model included an analog fuel control representative of existing commercial fuel controls. The ACSL model was stripped of non-essential states to produce an 8 state linear state space model of the engine. The A, B, and C matrices, derived from rated operating conditions, were used to obtain feedback control gains by the following methods: (1) state feedback; (2) LQR theory; (3) Bellman method; and (4) polygonal search. An off-load transient followed by an on-load transient was run for each of these fuel controls. The transient curves obtained were used to compare the state space fuel controls with the analog fuel control. The state space fuel controls did better than the analog control.


Author(s):  
Hideo Kobayashi ◽  
Shogo Tsugumi ◽  
Yoshio Yonezawa ◽  
Riuzou Imamura

IHI is developing a new heavy duty gas turbine engine for 2MW class co-generation plants, which is called IM270. This engine is a simple cycle and single-spool gas turbine engine. Target thermal efficiency is the higher level in the same class engines. A dry low NOx combustion system has been developed to clear the strictest emission regulation in Japan. All parts of the IM270 are designed with long life for low maintenance cost. It is planned that the IM270 will be applied to a dual fluid system, emergency generation plant, machine drive engine and so on, as shown in Fig.1. The development program of IM270 for the co-generation plant is progress. The first prototype engine test has been started. It has been confirmed that the mechanical design and the dry low NOx system are practical. The component tuning test is being executed. On the other hand, the component test is concurrently in progress. The first production engine is being manufactured to execute the endurance test using a co-generation plant at the IHI Kure factory. This paper provides the conceptual design and status of the IM270 basic engine development program.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Mapopa Chipofya ◽  
Deok Jin Lee ◽  
Kil To Chong

This paper presents a solution to stability and trajectory tracking of a quadrotor system using a model predictive controller designed using a type of orthonormal functions called Laguerre functions. A linear model of the quadrotor is derived and used. To check the performance of the controller we compare it with a linear quadratic regulator and a more traditional linear state space MPC. Simulations for trajectory tracking and stability are performed in MATLAB and results provided in this paper.


Author(s):  
Ugo Campora ◽  
Mauro Carretta ◽  
Carlo Cravero

A simulation of performance degradation for an aeronautical gas turbine engine (Honeywell T55 L712) is presented. The effects of turbine (low and high pressure stages) erosion on the engine performance have been investigated in some detail. The behavior of the engine has been simulated using a dynamic model implemented in Matlab-Simulink. Using a throughflow code the LPT and HPT have been simulated and their performance maps have been obtained with a high level of accuracy. In order to understand the effects of turbine erosion nine degradation levels have been introduced and the LPT and HPT performance have been computed using the abovementioned throughflow code. The degradation levels have been based on stator erosion effects (increase of throat section and blade thickness reduction) only according to the experimental evidence from the engine tests from Piaggio Aero Industries. The introduction of the modified turbine characteristics into the Matlab-Simulink model has allowed the degradation effects on the overall engine performance to be tested and discussed. Finally, using experimental data from the industrial maintenance database, the link of each level of degradation with the number of the engine operational time (hours) has been obtained.


Author(s):  
G. L. Padgett ◽  
W. W. Davis

In response to the needs of the market place for turbines in the 5000 to 6000 hp class, Solar Turbines Incorporated has responded with an uprate of their Centaur engine. Discussed in this paper are the features of the uprated engine, the Development Plan and the methodology for incorporating into the design the advanced aerodynamic and mechanical technology of the Mars engine. The Mars engine is a high efficiency 12,500 hp engine which operates at a turbine inlet temperature of 1935°F. State-of-the-art computer aided methods have been applied to produce the design, and the results from this approach are displayed.


1948 ◽  
Vol 159 (1) ◽  
pp. 230-244 ◽  
Author(s):  
D. G. Ainley

The advent of the gas-turbine engine, with its absolute dependence on high component efficiencies for reasonable economic operation, and the necessity for new materials which will withstand high stresses at much greater temperatures than encountered on steam turbines, has led engineers to review the design of turbines closely both from an aerodynamic and a mechanical standpoint: there is still a great deal to be learnt. Reeman† has outlined the present mathematical approach to the design of turbines and surveyed very comprehensively the mechanical problems that are involved. This paper is intended to indicate the manner in which the aerodynamic design of a turbine has developed from that of its steam predecessor and, in particular, surveys some recent experimental work relating to turbine performance. The general aims of the experimental work are to explore the gas-flow processes within a turbine stage, to determine the associate aerodynamic efficiencies, and to gain some understanding of the limitations imposed upon the aerodynamic design of a stage by the necessity for the high efficiency which is required for economic operation of a gas-turbine engine. The data that have so far come to light, though incomplete, illustrate the general overall characteristics of high- and low-reaction turbines, and also the effect that high Mach number or low Reynolds number may have on turbine performance. To conclude the paper, a brief description of the technique adopted for adequate full-scale testing of turbines is presented. This covers the essential points of, power absorption, instrumentation, and safety precaution. The effects of errors in measurements are also discussed.


Sign in / Sign up

Export Citation Format

Share Document