2-DOF Planar Motion Control System Using Model Reference Adaptive Control (MRAC) Algorithm

Author(s):  
Andrew M. Y. Luk ◽  
Eric H. K. Fung ◽  
W. C. Gan

This paper reports the application of Model Reference Adaptive Control (MRAC) to an X-Y planar motion mechanism. A flexure-based 2-DOF planar motion platform is first developed for the wafer probing purpose and a planar Voice Coil Motor (VCM) is used for driving the mechanism and the flexural bearings. The dynamics of the motion platform is governed by a set of differential equations using the mass-spring-damper model and the Kirchhoff’s circuit laws. Due to the non-linearity of the force constant and the coupling effect of the VCM, a MRAC algorithm is proposed to implement on the motion control system so as to improve the system transient response. In order to guarantee the stability of the Model Reference Adaptive System (MRAS), Lyapunov Theory is adopted in the controller design. The control system performance is simulated using MATLAB /SIMULINK with the considerations of the motor non-linearity and the assembly variation of the flexural mechanism. On the other hand, a conventional PID controller is also constructed for control experiments to compare the transient responses between MRAC and PID control systems. Simulation results revealed that the proposed MRAS outperforms the PID controller for the 2 DOF planar motion system in the presence of sensor noise, disturbing force and parameter variation effects.

Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 89 ◽  
Author(s):  
Bin Wei

In this paper, the author presents the adaptive control design and stability analysis of robotic manipulators based on two main approaches, i.e., Lyapunov stability theory and hyperstability theory. For the Lyapunov approach, the author presents the adaptive control of a 2-DOF (degrees of freedom) robotic manipulator. Furthermore, the adaptive control technique and Lyapunov theory are subsequently applied to the end-effector motion control and force control, as in most cases, one only considers the motion control (e.g., position control, trajectory tracking). To make the robot interact with humans or the environment, force control must be considered as well to achieve a safe working environment. For the hyperstability approach, a control system is developed through integrating a PID (proportional–integral–derivative) control system and a model reference adaptive control (MRAC) system, and also the convergent behavior and characteristics under the situation of the PID system, model reference adaptive control system, and PID+MRAC control system are compared.


AIChE Journal ◽  
1967 ◽  
Vol 13 (3) ◽  
pp. 485-491 ◽  
Author(s):  
Robert M. Casciano ◽  
H. Kenneth Staffin

Sign in / Sign up

Export Citation Format

Share Document