Study on Heat Transfer Characteristics of Loop Heat Pipe for Solar Collector

Author(s):  
Shota Sato ◽  
Shigeki Hirasawa ◽  
Tsuyoshi Kawanami ◽  
Katsuaki Shirai

We experimentally study the thermal conductance of single-tube and loop heat pipes for a solar collector. The evaporator of the heat pipe is 1 m long, 6 mm in diameter and has 30° inclination. The thermal conductance is defined as the heat transfer rate divided by the temperature difference between the evaporator-wall and the condenser-wall. Effects of heat transfer rate, saturation temperature of the working fluid, liquid filling ratio, inclination angle, and position of the evaporator on the thermal conductance are examined. We found that the thermal conductance of the 30°-inclined loop heat pipe with an upper-evaporator is 40–50 (W/K), which is 1.8 times higher than that of the vertical loop type and 3 times higher than that of the single-tube type. Thus, the inclined loop heat pipe is preferable for a solar collector. There is an optimum liquid filling ratio. When the liquid filling ratio is too small, a dry-out portion appears in the evaporator. When the liquid filling ratio is too large, the liquid flows in the condenser to decrease heat transfer area. Also we numerically analyze the thermal conductance of a vertical loop heat pipe.

2011 ◽  
Vol 396-398 ◽  
pp. 250-254 ◽  
Author(s):  
Fu Min Shang ◽  
Jian Hong Liu ◽  
Deng Ying Liu

The objective of this article is to provide the heat transfer characteristics of Cu-H2O nanofluids in self-exciting mode oscillating-flow heat pipe under different laser heating input, and to compare with the heat transfer characteristics of the same heat pipe with distilled water as working fluids. In this paper, the peculiarity of heat transfer rate of the SEMOS heat pipe with Cu-H2O fluid has been experimentally confirmed by changing the proportion of working fluid and Cu nanoscale particles in the heat pipe. As the results, it has been confirmed that the parameter of filling rate of working fluid determine the heat transfer rate of SEMOS heat pipe, although under certain condition heat transfer performance could be improved because of the addition of nanofluids.


MECHANICAL ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 1-8
Author(s):  
M. Mirmanto ◽  
◽  
M. Wirawan ◽  
B.H. Saputra

1973 ◽  
Vol 25 (3) ◽  
pp. 1115-1117
Author(s):  
V. Ya. Sasin ◽  
A. Ya. Shelginskii

2015 ◽  
Vol 7 (2) ◽  
pp. 168781401456781 ◽  
Author(s):  
S Boothaisong ◽  
S Rittidech ◽  
T Chompookham ◽  
M Thongmoon ◽  
Y Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document