Experimental Investigation on the Heat Transfer Characteristics of Nanofluids in Self-Exciting Mode Oscillating-Flow Heat Pipe

2011 ◽  
Vol 396-398 ◽  
pp. 250-254 ◽  
Author(s):  
Fu Min Shang ◽  
Jian Hong Liu ◽  
Deng Ying Liu

The objective of this article is to provide the heat transfer characteristics of Cu-H2O nanofluids in self-exciting mode oscillating-flow heat pipe under different laser heating input, and to compare with the heat transfer characteristics of the same heat pipe with distilled water as working fluids. In this paper, the peculiarity of heat transfer rate of the SEMOS heat pipe with Cu-H2O fluid has been experimentally confirmed by changing the proportion of working fluid and Cu nanoscale particles in the heat pipe. As the results, it has been confirmed that the parameter of filling rate of working fluid determine the heat transfer rate of SEMOS heat pipe, although under certain condition heat transfer performance could be improved because of the addition of nanofluids.

Author(s):  
Li Jia ◽  
Yan Li

Experimental research was conducted to understand heat transfer characteristics of pulsating heat pipe in this paper. The PHP is made of high quality glass capillary tube. The heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage under different fill ratio. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appeares in top heating condition. The flow pattern in PHP is transferred form bulk flow to semi-annual flow and annual flow, and the performance of heat transfer is improved for down heating case under different fill ratios and heat transfer rate. The experimental results show that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.


Author(s):  
Fu-Min Shang ◽  
Yi-Fang Dong ◽  
Jian-Hong Liu ◽  
Deng-Ying Liu

In this article, the heat transferring property of the copper-water nanofluids in self-exciting mode oscillating flow heat pipe under different laser heating power is experimented, as well as is compared with that of the distilled water medium in self-exciting mode oscillating flow heat pipe under same heating condition. The objective of this article is to provide the heat transfer characteristics of Cu-H2O nanofluids in self-exciting mode oscillating-flow heat pipe under different laser heating input, and to compare with the heat transfer characteristics of the same heat pipe with distilled water as working fluids. The SEMOS HP used in this experiment is made of brass tube with 2mm interior diameter, which is consisted of 8 straight tubes with 4 turns’ evaporation section and 12 turns’ condensation section. The heat resource for the evaporation zone is eight channel quantum pitfall diode array semi-conductor laser heater with 940nm radiation wave length, while the radiation power of each channel is changeable within 0–50W and the facular size is 1×30mm2. The condensation section is set in a cooling water tank in which water is from another higher tank. The actual transferring rate could be calculated by the flow rate of the cooling water and the change of the temperature. The change of the temperature of the heat pipe wall is measured by those thermo-couple fixed in different section in the heat pipe and data is collected by a data acquisition. In the heat pipe the fluid filling rate is 43%, the pressure is 2.5×10−3Pa, and the heat pipe inclination angle is 55° while the size of the brass particle in the nanofluids is less than 60nm and volume proportion is 0.5%. In this paper, the particularity of heat transfer rate of the SEMOS heat pipe with Cu-H2O fluid has been experimentally confirmed by changing the proportion of working fluid and Cu nonsocial particles in the heat pipe. By comparing the experimental result of these two different medium in the SEMOS HP, it is shown that the heat transferring rate with brass-water nanofluids as medium is much better than that with distilled water as medium under same volume proportion.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7862
Author(s):  
Changhwan Lim ◽  
Jonghwi Choi ◽  
Hyungdae Kim

A fork-type heat pipe (FHP) is a passive heat-transport and air-cooling device used to remove the decay heat of spent nuclear fuels stored in a liquid pool during a station blackout. FHPs have a unique geometrical design to resolve the significant mismatch between the convective heat transfer coefficients of the evaporator and condenser parts. The evaporator at the bottom is a single heat-exchanger tube, whereas the condenser at the top consists of multiple finned tubes to maximize the heat transfer area. In this study, the heat transfer characteristics and operating limits of an FHP device were investigated experimentally. A laboratory-scale model of an FHP was manufactured, and a series of tests were conducted while the temperature was varied to simulate a spent fuel pool. As an index of the average heat transfer performance, the loop conductance was computed from the measurement data. The results show that the loop conductance of the FHP increased with the heat transfer rate but deteriorated significantly at the operating limit. The maximum attainable heat transfer rate of the unit FHP model was accurately predicted by the existing correlations of the counter-current flow limit for a single-rod-type heat pipe. In addition, the instant heat transfer behaviors of the FHP model under different temperature conditions were examined to interpret the measured loop conductance variation and operating limit.


2013 ◽  
Vol 465-466 ◽  
pp. 500-504 ◽  
Author(s):  
Shahrin Hisham Amirnordin ◽  
Hissein Didane Djamal ◽  
Mohd Norani Mansor ◽  
Amir Khalid ◽  
Md Seri Suzairin ◽  
...  

This paper presents the effect of the changes in fin geometry on pressure drop and heat transfer characteristics of louvered fin heat exchanger numerically. Three dimensional simulation using ANSYS Fluent have been conducted for six different configurations at Reynolds number ranging from 200 to 1000 based on louver pitch. The performance of this system has been evaluated by calculating pressure drop and heat transfer coefficient. The result shows that, the fin pitch and the louver pitch have a very considerable effect on pressure drop as well as heat transfer rate. It is observed that increasing the fin pitch will relatively result in an increase in heat transfer rate but at the same time, the pressure drop will decrease. On the other hand, low pressure drop and low heat transfer rate will be obtained when the louver pitch is increased. Final result shows a good agreement between experimental and numerical results of the louvered fin which is about 12%. This indicates the capability of louvered fin in enhancing the performance of heat exchangers.


Author(s):  
Xiaoyu Li ◽  
Zhenqun Wu ◽  
Huibo Wang ◽  
Hui Jin

Abstract In the supercritical water (SCW)-particle two-phase flow of fluidized bed, the particles that make up the particle cluster interact with each other through fluid, and it will affect the flow and heat transfer. However, due to the complex properties of SCW, the research on particle cluster is lacking, especially in terms of heat transfer. This research takes two particles as an example to study the heat transfer characteristics between SCW and another particle when one particle exists. This research uses the distance and angle between the two particles as the influencing factors to study the average heat transfer rate and local heat transfer rate. In this research, it is found that the effect is obvious when L/D = 1.1. When L = 1.1D, the temperature field and the flow field will partially overlap. The overlap of the temperature field will weaken the heat transfer between SCW and the particle. The overlap of the flow field has an enhanced effect on the heat transfer between SCW and the particle. The heat transfer between SCW and particles is simultaneously affected by these two effects, especially local heat transfer rate. In addition, this research also found that as the SCW temperature decreases, the thermal conductivity and specific heat of SCW increases, which enhances the heat transfer between SCW and the particles. This research is of great significance for studying the heat transfer characteristics of SCW-particle two-phase flow in fluidized bed.


Author(s):  
Shota Sato ◽  
Shigeki Hirasawa ◽  
Tsuyoshi Kawanami ◽  
Katsuaki Shirai

We experimentally study the thermal conductance of single-tube and loop heat pipes for a solar collector. The evaporator of the heat pipe is 1 m long, 6 mm in diameter and has 30° inclination. The thermal conductance is defined as the heat transfer rate divided by the temperature difference between the evaporator-wall and the condenser-wall. Effects of heat transfer rate, saturation temperature of the working fluid, liquid filling ratio, inclination angle, and position of the evaporator on the thermal conductance are examined. We found that the thermal conductance of the 30°-inclined loop heat pipe with an upper-evaporator is 40–50 (W/K), which is 1.8 times higher than that of the vertical loop type and 3 times higher than that of the single-tube type. Thus, the inclined loop heat pipe is preferable for a solar collector. There is an optimum liquid filling ratio. When the liquid filling ratio is too small, a dry-out portion appears in the evaporator. When the liquid filling ratio is too large, the liquid flows in the condenser to decrease heat transfer area. Also we numerically analyze the thermal conductance of a vertical loop heat pipe.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1616
Author(s):  
Jaehwan Lee ◽  
Dongmin Kim ◽  
Jeongmin Mun ◽  
Seokho Kim

Infrared detectors on satellites and spacecraft require cooling to increase their measurement sensitivity. To efficiently cool infrared detectors in a zero gravity environment and in limited spaces, a cryogenic loop heat pipe (CLHP) can be used to transfer heat over a certain distance by the capillary forces generated from porous wicks without a mechanical power source. The CLHP presented in this study transfers the heat load to a condenser 0.5 m away from an evaporator at temperatures below −150 °C. The CLHP with two evaporators includes a subloop for initial start-up, and uses a pressure reduction reservoir (PRR) for the supercritical start-up from room to cryogenic temperature. Nitrogen is used as the working fluid to verify the thermal behavior of the CLHP, and the heat-transfer capacity according to the nitrogen charging pressure of the PRR is investigated. To simulate a cryogenic environment, the CLHP is installed inside a space environment simulator, including a single-stage GM (Gifford McMahon) cryocooler to cool the condenser. The CLHP is horizontally installed to simulate zero gravity. The heat-transfer characteristics are experimentally evaluated through the loop circulation of the CLHP.


Sign in / Sign up

Export Citation Format

Share Document