2D Phase-Field Analyses of Axonal Extension of Nerve Cell

Author(s):  
K. Nakagawa ◽  
T. Takaki ◽  
Y. Morita ◽  
E. Nakamachi

In this study, we aimed to develop a computer-aided simulation technique to predict the axonal extension in the neuronal network evolution processes for design new scaffolds to activate the nerve cell and promote the nerve regeneration. We developed a mathematical model of axonal extension by using phase-field method and evaluated the validity of the mathematical model by comparison with the experiments. In the previous experimental studies, the peripheral nerve scaffold has been introduced to guide the axonal extension. Damaged part of nerve was replaced by the artificial tube as the scaffold to induce the axonal growth through the artificial tube and regenerate the nerve network. However, the scaffold made of biodegradable materials has a problem that it is degraded and absorbed before the nerve regenerate, and then the nerve cannot regenerate. Therefore, there is a need for the design and development of a scaffold for nerve regeneration to promote nerve regeneration. For that purpose, it is necessary to understand the difference between the axonal extensions by the surrounding environment, such as the shape or materials of the scaffold for nerve regeneration. In particular, the numerical technique to analyze the remodeling process of the nerve in the scaffold is strongly required to be established because the in-vivo experimental observation technology at the micro scale, bioethical issues in the animal experiment and requires time and money are also remained as unresolved problems. In this study, we developed a new simulation code which employed the phase-field method to predict the two-dimensional dendritic and axonal growth processes of nerve cells on cultivation scaffolds. We curried out the phase-field analyses to make clear how the parameters of Kobayashi–Warren–Carter (KWC) phase-field model affected on the morphologic growths of dendrite and axon. Simultaneously, we had observed the axonal extension process by using the PC-12D cells with nerve growth factor (NGF) on two-dimensional cultivation dish. Based on these axonal extension observation results, we approximated the morphological changes and establish the phenomenological model for phase-field analysis. Finally, we confirmed the validity of our newly developed phase-field simulation scheme in two dimensions by comparison with the experiments.

2011 ◽  
Vol 686 ◽  
pp. 409-425 ◽  
Author(s):  
Kentaro Takagi ◽  
Takeshi Matsumoto

AbstractA fully nonlinear numerical simulation of two-dimensional Faraday waves between two incompressible and immiscible fluids is performed by adopting the phase-field method with the Cahn–Hilliard equation due to Jacqmin (J. Comput. Phys., vol. 155, 1999, pp. 96–127). Its validation is checked against the linear theory. In the nonlinear regime, qualitative comparison is made with an earlier vortex-sheet simulation of two-dimensional Faraday waves by Wright, Yon & Pozrikidis (J. Fluid Mech., vol. 400, 2000, pp. 1–32). The vorticity outside the interface region is studied in this comparison. The period tripling state, which is observed in the quasi-two-dimensional experiment by Jiang, Perlin & Schultz (J. Fluid Mech., vol. 369, 1998, pp. 273–299), is successfully simulated with the present phase-field method.


2021 ◽  
Vol 26 ◽  
pp. 102150
Author(s):  
Dong-Cho Kim ◽  
Tomo Ogura ◽  
Ryosuke Hamada ◽  
Shotaro Yamashita ◽  
Kazuyoshi Saida

Author(s):  
Bo Yin ◽  
Johannes Storm ◽  
Michael Kaliske

AbstractThe promising phase-field method has been intensively studied for crack approximation in brittle materials. The realistic representation of material degradation at a fully evolved crack is still one of the main challenges. Several energy split formulations have been postulated to describe the crack evolution physically. A recent approach based on the concept of representative crack elements (RCE) in Storm et al. (The concept of representative crack elements (RCE) for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121:779–805, 2020) introduces a variational framework to derive the kinematically consistent material degradation. The realistic material degradation is further tested using the self-consistency condition, which is particularly compared to a discrete crack model. This work extends the brittle RCE phase-field modeling towards rate-dependent fracture evolution in a viscoelastic continuum. The novelty of this paper is taking internal variables due to viscoelasticity into account to determine the crack deformation state. Meanwhile, a transient extension from Storm et al. (The concept of representative crack elements (RCE) for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121:779–805, 2020) is also considered. The model is derived thermodynamic-consistently and implemented into the FE framework. Several representative numerical examples are investigated, and consequently, the according findings and potential perspectives are discussed to close this paper.


Sign in / Sign up

Export Citation Format

Share Document