Complex Sparse-Filled Mechanical Property Prediction Methods for Direct Digital Manufacturing

Author(s):  
David N. Kordonowy ◽  
Sydney A. Giblin

This paper describes how direct digital manufacturing mechanical properties can be analytically estimated for structural use and the associated analytical and test methods used in the design and fabrication of airframes manufactured using additive manufacturing. Complex shape structures, which are now possible using additive manufacturing, and their associated mechanical properties can be predicted in order to allow operationally safe and highly predictive structures to be fabricated. Direct digital manufacturing allows for much greater flexibility and control over the design of airframes, leading to more structurally efficient and capable airframes. These advantages are revealed by application of direct digital manufacturing methods on a series of fixed wing subsonic transport concept wind tunnel scale models that are carried out as a part of the NASA N+3 program, which is paving the way for next generation aircraft that are highly fuel efficient, low-noise, and low-emission. Verification of these methods through test shows excellent correlation that provides reliability in complex sparse filled additive manufacturing design. The outcome of this is a knowledge base, which can then be applied to a system in operation. The combined potential of a flexible manufacturing system and proven predictive analysis tools shorten development time and expand the opportunities for mass customization. These combined benefits enable industry to fabricate affordable highly optimized custom products while concurrently reducing the cycle times required to field new products.

2019 ◽  
Vol 890 ◽  
pp. 92-97
Author(s):  
Saeed D. Mohan ◽  
Meruyert Nazhipkyzy ◽  
Pedro Carreira ◽  
Cyril Santos ◽  
Fred J. Davis ◽  
...  

Additive manufacturing has surged in popularity as a route to designing and preparing functional parts. Depending on the parts function, certain attributes such as high mechanical performances may be desired. We develop a route for improving the mechanical properties of polymer devices, fabricated through additive manufacturing by combining electrospinning and stereo-lithography into one automated process. This process utilises the impressive mechanical properties of carbon nanotubes by encapsulating and aligning them in electrospun fibres. Composite fibres will be incorporated into polymer resins prepared with stereo-lithography, thereby providing resins that benefit from the composite fibres properties, enhancing their overall mechanical properties.


Author(s):  
Aamer Nazir ◽  
Jeng-Ywan Jeng

The primary concern of the Industry 4.0 is the direct digital manufacturing of customized products on demand at high production speed, high accuracy with functional material property. Although the unique capabilities of existing additive manufacturing technologies make it suitable for direct digital manufacturing, there are numerous limitations which include low printing speed, less accuracy and repeatability, and a limited selection of materials for a particular application. Therefore, a high-speed additive manufacturing approach is proposed in this paper, that is capable of achieving high speed of production, high accuracy, and surface finish, and functional material property. For better understanding, authors describe those additive manufacturing technologies that are capable of achieving the aforementioned characteristics. For validation, samples of various dimensions were 3D printed on a selective laser sintering and a high-speed multijet fusion 3D printer. The results were compared in the context of printing speed, surface roughness (Ra), and hardness of printed parts. Results revealed that the multijet fusion process is significantly faster than its counterpart while sacrificing Ra to some extent but the hardness of printed parts is not changed significantly. The selective laser sintering-printed samples had a 15% lower Ra compared with multijet fusion samples. The results also revealed that the multijet fusion process might be able to print composite/multi-materials; however, more research needs to be done.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Lung Chow ◽  
Kit-Lun Yick ◽  
Mei-Ying Kwan ◽  
Chun-Fai Yuen ◽  
Sun-Pui Ng ◽  
...  

Hypertrophic scars (HS) are considered to be the greatest unmet challenge in wound and burn rehabilitation. The most common treatment for HS is pressure therapy, but pressure garments may not be able to exert adequate pressure onto HS due to the complexity of the human body. However, the development of three-dimensional (3D) scanning and direct digital manufacturing technologies has facilitated the customized placement of additively manufactured silicone gel onto fabric as a component of the pressure therapy garment. This study provides an introduction on a novel and customized fabrication approach to treat HS and discusses the mechanical properties of 3D printed fabric reinforced with a silicone composite. For further demonstration of the suggested HS therapy with customized silicone insert, silicone inserts for the finger webs and HS were additively manufactured onto the fabric. Through the pressure evaluation by Pliance X system, it proved that silicone insert increases the pressure exerted to the HS. Moreover, the mechanical properties of the additively manufactured fabric silicone composites were characterized. The findings suggest that as compared with single viscosity print materials, the adhesive force of the additively manufactured silicone and fabric showed a remarkable improvement of 600% when print materials with different viscosities were applied onto elevated fabric


2018 ◽  
pp. 181-194
Author(s):  
PHF Cavasso ◽  
NW Paschoalinoto ◽  
C Lazareti ◽  
D Gregório ◽  
DOT Bruno

O estudo se desenvolveu por meio da fabricação e posterior ensaio de corpos de prova confeccionados por meio de Direct Digital Manufacturing (DDM), usinagem de placas extrudadas e injeção de polímeros. Um comparativo das propriedades mecânicas obtidas pelos ensaios de tração foi realizada. A avaliação das aplicações de peças DDM, especialmente por se tratar de uma tecnologia relativamente jovem e que ainda não tem todo seu potencial explorado, foi o que motivou a realização desse trabalho. Cada um dos três processos avaliados apresentou particularidades. Os ensaios de peças usinadas e injetadas apresentaram resultados bem característicos, sendo o material usinado mais resistivo à forças trativas do que o material injetado. As peças fabricadas por DDM se mostraram tão eficientes quanto à injeção no ensaio de tração.


Sign in / Sign up

Export Citation Format

Share Document