direct digital manufacturing
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 15 (2) ◽  
pp. 8029-8041
Author(s):  
Jose Alejandro Urrego ◽  
Fabio Arturo Rojas ◽  
Jaime Roberto Muñoz

The process of fused deposition material (FDM) was used to manufacture propellant grains of Acrylonitrile Butadiene Styrene (ABS) as novel rocket fuel grain, with three types of geometry in the burning port. These solid fuel grains were used to measure the typical characteristics of combustion in rocket motors such as thrust and pressure inside the combustion chamber, seeking to obtain preliminary characteristics of operation and analyze the effect of combustion port geometry on pressure and thrust, using Multivariate Analysis of Variance (MANOVA) as statistical method. Two of the three geometries were manufactured with a helical-finocyl configuration, specially designed to be fabricated by Direct Digital Manufacturing (DDM), the other one was a straight-bore geometry also by DDM. This characterization experiment was performed on a static hybrid rocket engine, designed to inject 99.98% pure nitrous oxide into a combustion chamber with capacity to withstand 6.9 MPa of pressure, with an easy-to-exchange nozzle, avoiding erosive behavior in the throat. Statistical analyses made with the ABS fuel grains, suggest a significant effect on rocket motor pressure and thrust, due to helical geometric changes made to the combustion port of solid fuel grains made by FDM manufacture process.


2021 ◽  
Vol 3 (2) ◽  
pp. 59-75
Author(s):  
Louis van der Elst ◽  
Camila Faccini de Lima ◽  
Meve Gokce Kurtoglu ◽  
Veda Narayana Koraganji ◽  
Mengxin Zheng ◽  
...  

Abstract Recent advances in additive manufacturing enable redesigning material morphology on nano-, micro-, and meso-scale, for achieving an enhanced functionality on the macro-scale. From non-planar and flexible electronic circuits, through biomechanically realistic surgical models, to shoe soles individualized for the user comfort, multiple scientific and technological areas undergo material-property redesign and enhancement enabled by 3D printing. Fiber-device technology is currently entering such a transformation. In this paper, we review the recent advances in adopting 3D printing for direct digital manufacturing of fiber preforms with complex cross-sectional architectures designed for the desired thermally drawn fiber-device functionality. Subsequently, taking a recursive manufacturing approach, such fibers can serve as a raw material for 3D printing, resulting in macroscopic objects with enhanced functionalities, from optoelectronic to bio-functional, imparted by the fiber-devices properties. Graphic abstract


Author(s):  
Ian Gibson ◽  
David Rosen ◽  
Brent Stucker ◽  
Mahyar Khorasani

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2319 ◽  
Author(s):  
Qianqian Wang ◽  
Chencheng Ji ◽  
Lushan Sun ◽  
Jianzhong Sun ◽  
Jun Liu

As direct digital manufacturing, 3D printing (3DP) technology provides new development directions and opportunities for the high-value utilization of a wide range of biological materials. Cellulose nanofibrils (CNF) and polylactic acid (PLA) biocomposite filaments for fused deposition modeling (FDM) 3DP were developed in this study. Firstly, CNF was isolated by enzymatic hydrolysis combined with high-pressure homogenization. CNF/PLA filaments were then prepared by melt-extrusion of PLA as the matrix and CNF as the filler. Thermal stability, mechanical performance, and water absorption property of biocomposite filaments and 3D-printed objects were analyzed. Findings showed that CNF increased the thermal stability of the PLA/PEG600/CNF composite. Compared to unfilled PLA FDM filaments, the CNF filled PLA biocomposite filament showed an increase of 33% in tensile strength and 19% in elongation at break, suggesting better compatibility for desktop FDM 3DP. This study provided a new potential for the high-value utilization of CNF in 3DP in consumer product applications.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Lung Chow ◽  
Kit-Lun Yick ◽  
Mei-Ying Kwan ◽  
Chun-Fai Yuen ◽  
Sun-Pui Ng ◽  
...  

Hypertrophic scars (HS) are considered to be the greatest unmet challenge in wound and burn rehabilitation. The most common treatment for HS is pressure therapy, but pressure garments may not be able to exert adequate pressure onto HS due to the complexity of the human body. However, the development of three-dimensional (3D) scanning and direct digital manufacturing technologies has facilitated the customized placement of additively manufactured silicone gel onto fabric as a component of the pressure therapy garment. This study provides an introduction on a novel and customized fabrication approach to treat HS and discusses the mechanical properties of 3D printed fabric reinforced with a silicone composite. For further demonstration of the suggested HS therapy with customized silicone insert, silicone inserts for the finger webs and HS were additively manufactured onto the fabric. Through the pressure evaluation by Pliance X system, it proved that silicone insert increases the pressure exerted to the HS. Moreover, the mechanical properties of the additively manufactured fabric silicone composites were characterized. The findings suggest that as compared with single viscosity print materials, the adhesive force of the additively manufactured silicone and fabric showed a remarkable improvement of 600% when print materials with different viscosities were applied onto elevated fabric


Author(s):  
K. R. Balasubramanian ◽  
V. Senthilkumar ◽  
Divakar Senthilvel

Additive manufacturing (AM) is also referred to as 3D printing, rapid prototyping, solid freeform fabrication, rapid manufacturing, desktop manufacturing, direct digital manufacturing, layered manufacturing, generative manufacturing, layered manufacturing, solid free-form fabrication, rapid prototype, tool-less model making, etc. It is emerging as an important manufacturing technology. It is the process of building up of layer-by-layer by depositing a material to make a component using the digital 3D model data. The main advantages of AM are mass customization, minimisation of waste, freedom of designing complex structures, and ability to print large structures. AM is broadly applicable to all classes of materials including metals, ceramics, polymers, composites, and biological systems. The AM methods used for producing complex geometrical shapes are classified based either on energy source (laser, electron beam) used or the material feed stock (powder feed, wire feed).


Author(s):  
Aamer Nazir ◽  
Jeng-Ywan Jeng

The primary concern of the Industry 4.0 is the direct digital manufacturing of customized products on demand at high production speed, high accuracy with functional material property. Although the unique capabilities of existing additive manufacturing technologies make it suitable for direct digital manufacturing, there are numerous limitations which include low printing speed, less accuracy and repeatability, and a limited selection of materials for a particular application. Therefore, a high-speed additive manufacturing approach is proposed in this paper, that is capable of achieving high speed of production, high accuracy, and surface finish, and functional material property. For better understanding, authors describe those additive manufacturing technologies that are capable of achieving the aforementioned characteristics. For validation, samples of various dimensions were 3D printed on a selective laser sintering and a high-speed multijet fusion 3D printer. The results were compared in the context of printing speed, surface roughness (Ra), and hardness of printed parts. Results revealed that the multijet fusion process is significantly faster than its counterpart while sacrificing Ra to some extent but the hardness of printed parts is not changed significantly. The selective laser sintering-printed samples had a 15% lower Ra compared with multijet fusion samples. The results also revealed that the multijet fusion process might be able to print composite/multi-materials; however, more research needs to be done.


Sign in / Sign up

Export Citation Format

Share Document